

Design and Verification of AHB Bus Protocol using Vivado Tool

Arjun1, Chetan1, Guruprasada L1, Shreyas Gowda B S1
2Dr. Ravi J

 1Students, Global Academy of Technology,

2Professor, Global Academy of Technology, Bengaluru 560098

Abstract

The AMBA AHB protocol is an on-chip communication
standard that defines the rules for transferring data between
master and slave devices. It's widely used in System -On -Chip
(SoC) designs and microcontrollers. A M B A includes different
bus architectures, such as Advanced System Bus (ASB),
Advanced Peripheral Bus (APB), and Advanced High-
Performance Bus (AHB). A H B stands out as the high-
performance and high-bandwidth option, making it the preferred
choice for systems with high-frequency clocks.

This makes it popular for system designers. Verification is a
crucial part of VLSI design to ensure that everything works as
expected. This project focuses on designing the AHB protocol
with a single master and multiple slaves using System Verilog.
It also includes verification using Hardware Verification
Languages (HVL) like System Verilog. The design and
verification are carried out using the Vivado tool, with
waveform simulations to check the results.

Keywords: Wrap, AXI, INCR, AMBA, System Verilog

I. INTRODUCTION

The three buses that make up AMBA. Embedded
microcontrollers can be utilized with the Advanced System
Buses (ASBs), which are the most efficient buses. An
advanced peripheral bus (APB) link provides low-voltage
bandwidth. The goal of the most recent bus generation, the
AHB bus, is to manage needs while adhering to the
specifications of a functional design style. a typical system
bus with high of t bandwidth throughput and support for
various bus managers. they make he functionalities needed for
sophisticated, standard clock systems. Among these is AHB
Lite, a basic kind with numerous slaves and a single master.
Thus, complicated procedures like mediation confirmation or
retries are not necessary. The most crucial component of the
VLSI area is verification. It is imperative to verify the
functioning of all SoC designs to ascertain if they align with
the provided information or not. The semiconductor sector
benefits from verification as it boosts production. However,
verification processes need to be quick and effective, hence,
UVM is used to achieve effective authentication. The
authentication process requires adherence to the standard
method. In comparison to other verification techniques, it is
more rapid, reusable, efficient, and portable.

 Figure 2: Manager Interface

Figure 3:Subordinate Interface

OEIL RESEARCH JOURNAL (ISSN:0029-862X) VOLUME 23 ISSUE 5 2025

PAGE NO: 281

Operation:

1 Requirement Analysis: Begin by thoroughly understanding the
AHB bus protocol specification, including its various interfaces
and their respective functionalities. Identify specific design
requirements, such as data width, address space, burst types, and
transaction types, to tailor the protocol implementation.

2 Modular Design Architecture: Adopt a modular approach to
design, breaking down the protocol into distinct components like
master, slave, and interconnect modules. Leverage System
Verilog's features for encapsulation, parameterization, and
hierarchical design to ensure scalability and reusability.

3 Interface Definition and Signal Mapping: Define the interface

ports and signal connections for each module, adhering to the
protocol specification. Establish clear communication paths
between modules, ensuring proper data and control flow.

4 RTL Coding: Implement the protocol design in System

Verilog, emphasizing coding guidelines, naming conventions,
and structured coding practices to enhance readability and
maintainability. Utilize data structures like arrays and structs to
organize and manage protocol-specific information efficiently.

5 Functional Verification: Develop a comprehensive testbench
environment, encompassing the AHB protocol design and
relevant test scenarios. Employ constrained random testing to
generate diverse stimuli, covering a wide range of transaction
types, address ranges, and data widths. Implement assertions to
verify protocol-specific properties and constraints, ensuring
compliance with the standard.

6 Functional Coverage Analysis: Define a set of coverage goals
to track the completeness of the verification process. Monitor the
coverage metrics to identify untested scenarios and refine the
testbench to achieve higher coverage.

7 Performance Verification: Evaluate the performance of the

AHB protocol design by conducting simulations with varying
traffic loads, transaction rates, and data transfer sizes. Analyze
the results to ensure that the design meets specified throughput
and latency requirements.

8 Corner Case Testing: Design specialized test cases to exercise
edge conditions and corner cases, such as boundary values,
exceptional scenarios, and asynchronous events. Verify that the
AHB protocol implementation gracefully handles these critical
situations.

9 Documentation and Reporting: Maintain comprehensive
documentation, including design specifications, test plans,
verification results, and any design decisions or tradeoffs
madeduring the project. Generate detailed reports summarizing
the design and verification process, highlighting key
achievements and areas for potential improvement

Burst operation :

The AHB protocol supports a variety of data transfer types,
including single transfers, undefined-length bursts, and fixed-length
bursts of 4, 8, or 16 beats. These burst transfers can either be
incrementing or wrapping. In an incrementing burst, the address of
each subsequent transfer increases linearly, accessing consecutive
memory locations. In contrast, a wrapping burst resets the address
within a specific boundary once it reaches the end of the defined
range, which is especially useful for circular buffer operations.
The boundary at which wrapping occurs is determined by the size
of each data transfer (controlled by the HSIZE signal) multiplied
by the number of beats in the burst (defined by HBURST). For
example, a 4-byte word transfer in a 4-beat wrapping burst will
wrap at 16-byte boundaries, such as addresses 0x30 and 0x3C. If a
manager (master device) encounters a limitation, such as a 1KB
address boundary, it may not be able to initiate an incrementing
burst. In such cases, it can fall back to performing a single transfer
or a burst with a single beat followed by an undefined-length burst.
Proper alignment is important in burst transfers. Each transfer in a
burst must start at an address that matches the transfer size, meaning
word (4-byte) and halfword (2-byte) transfers should be aligned to
4-byte and 2-byte boundaries, respectively. Misaligned addresses
can lead to incorrect behaviour or simulation errors. In fact, earlier
versions of the AHB specification (Issues A and B) mandated that
IDLE shared addresses must also be aligned to avoid such issues.
The AHB protocol includes several types of burst modes. The most
basic is the Single Data Transfer (SDT), where only one data item
is moved per transaction. More advanced bursts include INCR4,
INCR8, and INCR16, where the address increments by one word
after each transfer, allowing for 4, 8, or 16 consecutive data
movements. In the Wrap Burst mode, the address does not follow a
straight path but instead loops within a set boundary, making it ideal
for operations involving circular data buffers.

OEIL RESEARCH JOURNAL (ISSN:0029-862X) VOLUME 23 ISSUE 5 2025

PAGE NO: 282

In the protocol, error responses are essential for maintaining the
integrity and reliability of data transfers. When an error occurs
during a transaction, the AHB protocol defines several
mechanisms for handling and communicating these errors.
Here are some common error responses in the

AHB protocol: •

OKAY: This response indicates that the transfer was successful
without any errors. The master receives this response when the
slave successfully processes the transaction.

• ERROR: The ERROR response indicates that an error
occurred during the transaction. This could be due to various
reasons such as bus contention, data corruption, or a violation of
the protocol's timing requirements. When a slave detects an
error, it asserts the ERROR response to signal to the master that
the transaction was unsuccessful.

• RETIRE: The RETIRE response is typically used in split
transactions where a master sends a request but does not wait for
the response immediately. When the slave finishes processing
the request, it sends a RETIRE response to indicate that the
request has been completed. This allows the master to continue
with other transactions without waiting for the response.

• SPLIT: In a split transaction, if a slave cannot immediately
process a request, it may respond with a SPLIT response to
indicate that the transaction has been split into multiple phases.
The master can then continue with other transactions while
waiting for the completion of the split transaction.

• RETRY: The RETRY response indicates that the slave is
temporarily unable to process the transaction and requests the
master to retry the transaction later. This could happen if the
slave is busy or if there is contention on the bus.

Fig. 4: Data transfer with error response

Fig 5: Read transfer

Fig 6:Write transfer

OEIL RESEARCH JOURNAL (ISSN:0029-862X) VOLUME 23 ISSUE 5 2025

PAGE NO: 283

II. Locked Transfer

When a master needs to perform a sequence of operations
on a shared resource without interruption, it can initiate a
locked transfer Lock Phase.
The master initiates a locked transfer by issuing a request
to acquire the lock on the shared resource. This request
includes the LOCK signal asserted by the master. Response
Phase,The slave responsible for managing the shared
resource responds to the lock request. If the resource is
available, the slave responds with an OKAY response,
indicating that the lock has been acquired. If the resource is
currently locked by another master, the slave responds with
a RETRY or SPLIT response, indicating that the lock is not
available at the moment.
Another phase of locked transfer is the Transfer Phase.

Once the lock is acquired, the master proceeds with the
sequence of operations it needs to perform on the shared
resource. These operations typically involve reading from
or writing to the resource. Unlock Phase: After completing
the sequence of operations, the master releases the lock by
issuing a request to unlock the resource.

 WAVEFORM
 Figure 4: AHB Basic Transaction

Basic transfers

The system using the Advanced High-Performance Bus
(AHB) protocol consists of several key signals and phases.
The clock signal (HCLK) synchronizes the operations of the
system, while the address phase involves transmitting
address information on the HADDR [31:0] lines. In the data
phase, data is either read from or written to the memory or
peripheral on the HRDATA [31:0] lines. The write control
signal (HWRITE) indicates whether the operation is a read or
write, and the readiness signal (HREADY) shows whether
the data phase can complete the current transfer.
Transactions consist of an address phase followed by a data
phase, with the HWRITE signal controlling the type of
operation and the HREADY signal indicating the readiness of
the bus to complete the transfer.

OEIL RESEARCH JOURNAL (ISSN:0029-862X) VOLUME 23 ISSUE 5 2025

PAGE NO: 284

Figure 6: Schematic View

Figure 5: FIXED Burst-type Transaction

OEIL RESEARCH JOURNAL (ISSN:0029-862X) VOLUME 23 ISSUE 5 2025

PAGE NO: 285

 RESULTS

The verification environment for the AHB protocol is built
using System Verilog modules like Interface, Driver, Generator,
Transaction, Scoreboard, Assertions, and Monitor. In this setup,
test cases are created in the Generator by specifying a test-case
number. The Driver sends these test-case packets to the Design
Under Verification (DUV). The DUV then processes different
burst-type transactions (such as single, incrementing, and
wrapping bursts) according to the AHB protocol.
The Monitor observes the outputs from the DUV and sends
them to the Scoreboard. The Scoreboard compares these outputs
with the reference (Golden Model) outputs. If the DUV output
matches the Golden Model, the design is considered verified.
All these steps are simulated using software like Questa, which
generates waveforms to visualize the verification results.
In simple terms:
Test cases are generated and sent to the design. The design’s
outputs are checked against expected outputs. If they match, the
design works correctly. This process is repeated for different
types of data bursts using the AHB protocol, and the results are
visualized using simulation tools. displayed in Figures 4 to 8

I. CONCLUSION

Proofing of AHB Bus Protocol for single grasp-single Slave for
constant, INCR, and WRAP has been accomplished by means
of designing the Verification IP using the usage of system

II. REFERENCES

[1] Harsha Garua, Keshav Sharma, Chusen Duari,
“verification of AMBA AHB bus protocol implementing incr
and wrap burst using system Verilog”, International Journal of
Research in Engineering and Technology, Volume-2 Issue 6,
2019.

[2] G. Kanaka Maha Lakshmi, M. Manasa Lakshmi, “AMBA-
HB Protocol Verification by using System Verilog”,
International Research Journal of Engineering and Technology
Volume-3 Issue-8, 2016.
[3] K. Lakshmi, M.M. Dasu, “Verification of the AHB20cp
Bridge using System Verilog and effective bus Utilization
calculation for AHB 3.0 Protocol”, International Journal for
Research & Development in Technology, Volume-6, Issue-1,
2016.

[4] Rashmi Samanth, Subramanya G. Nayak, “Design and SV
Based Verification of AMBA AHB Protocol for SOC
Integration”, International Journal of Recent Technology and
Engineering, Volume-8, Issue-2, 2019.

[5] Dr. Priyanka Choudhury, Perrumalla Giridhar “Design and
Verification of AMBA AHB”, IEEE International Conference
on the Advanced Technology in Intelligent Control,
Environment, Computing & Communication Engineering
2019.

[6] P.Harishankar, Mr.Chosen Duari Mr.Ajay Sharma,“Design

and Synthesis of Efficient FSM for Master and Slave
Interface in AMBA AHB”, International Journal of
Engineering Development and Research, Volume 2, Issue
3, 2014.

[7] Shivakumar B.R Deeksha L, “Efficient Design and
Implementation of AMBA AHB Bus Protocol using Verilog”,
IEEE International Conference on Intelligent Sustainable
System, 2019.

[8] Mr. M. Naresh Kumar, K.Manikanta Sai Kishore “Design
and Implementation of Efficient FSM for AHB Master and
Arbiter”, International Journal and magazines of Engineering
Technology, Management and Research. 2015.

[9] Shraddha divekar, Archana Tiwari “Multichannel AMBA

AHB with Multiple Arbitration Technique”, International
Conference on Signal Processing and Communication, Apr 3-
5, 2014.

OEIL RESEARCH JOURNAL (ISSN:0029-862X) VOLUME 23 ISSUE 5 2025

PAGE NO: 286

