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Abstract 

The AMBA AHB protocol is an on-chip communication 
standard that defines the rules for transferring data between 
master and slave devices. It's widely used in System -On -Chip 
(SoC) designs and microcontrollers. A M B A includes different 
bus architectures, such as Advanced System Bus (ASB), 
Advanced Peripheral Bus (APB), and Advanced High-
Performance Bus (AHB ). A H B stands out as the high-
performance and high-bandwidth option, making it the preferred 
choice for systems with high-frequency clocks. 

 

 
This makes it popular for system designers. Verification is a 
crucial part of VLSI design to ensure that everything works as 
expected. This project focuses on designing the AHB protocol 
with a single master and multiple slaves using System Verilog. 
It also includes verification using Hardware Verification 
Languages (HVL) like System Verilog. The design and 
verification are carried out using the Vivado tool, with 
waveform simulations to check the results. 

Keywords: Wrap, AXI, INCR, AMBA, System Verilog 

 
 

 

I. INTRODUCTION 

The three buses that make up AMBA. Embedded 
microcontrollers can be utilized with the Advanced System 
Buses (ASBs), which are the most efficient buses. An 
advanced peripheral bus (APB) link provides low-voltage 
bandwidth. The goal of the most recent bus generation, the 
AHB bus, is to manage needs while adhering to the 
specifications of a functional design style. a typical system 
bus with high of t bandwidth throughput and support for 
various bus managers. they make he functionalities needed for 
sophisticated, standard clock systems. Among these is AHB 
Lite, a basic kind with numerous slaves and a single master. 
Thus, complicated procedures like mediation confirmation or 
retries are not necessary. The most crucial component of the 
VLSI area is verification. It is imperative to verify the 
functioning of all SoC designs to ascertain if they align with 
the provided information or not. The semiconductor sector 
benefits from verification as it boosts production. However, 
verification processes need to be quick and effective, hence, 
UVM is used to achieve effective authentication. The 
authentication process requires adherence to the standard 
method. In comparison to other verification techniques, it is 
more rapid, reusable, efficient, and portable. 
 
            Figure 2: Manager Interface 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

 

Figure 3:Subordinate Interface 
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Operation: 

1 Requirement Analysis: Begin by thoroughly understanding the 
AHB bus protocol specification, including its various interfaces 
and their respective functionalities. Identify specific design 
requirements, such as data width, address space, burst types, and 
transaction types, to tailor the protocol implementation. 

2 Modular Design Architecture: Adopt a modular approach to 
design, breaking down the protocol into distinct components like 
master, slave, and interconnect modules. Leverage System 
Verilog's features for encapsulation, parameterization, and 
hierarchical design to ensure scalability and reusability. 

 
3 Interface Definition and Signal Mapping: Define the interface 

ports and signal connections for each module, adhering to the 
protocol specification. Establish clear communication paths 
between modules, ensuring proper data and control flow. 

 
4 RTL Coding: Implement the protocol design in System 

Verilog, emphasizing coding guidelines, naming conventions, 
and structured coding practices to enhance readability and 
maintainability. Utilize data structures like arrays and structs to 
organize and manage protocol-specific information efficiently. 

 
5 Functional Verification: Develop a comprehensive testbench 
environment, encompassing the AHB protocol design and 
relevant test scenarios. Employ constrained random testing to 
generate diverse stimuli, covering a wide range of transaction 
types, address ranges, and data widths. Implement assertions to 
verify protocol-specific properties and constraints, ensuring 
compliance with the standard. 

6 Functional Coverage Analysis: Define a set of coverage goals 
to track the completeness of the verification process. Monitor the 
coverage metrics to identify untested scenarios and refine the 
testbench to achieve higher coverage. 

 
7 Performance Verification: Evaluate the performance of the 

AHB protocol design by conducting simulations with varying 
traffic loads, transaction rates, and data transfer sizes. Analyze 
the results to ensure that the design meets specified throughput 
and latency requirements. 

8 Corner Case Testing: Design specialized test cases to exercise 
edge conditions and corner cases, such as boundary values, 
exceptional scenarios, and asynchronous events. Verify that the 
AHB protocol implementation gracefully handles these critical 
situations. 

 
9 Documentation and Reporting: Maintain comprehensive 
documentation, including design specifications, test plans, 
verification results, and any design decisions or tradeoffs 
madeduring the project. Generate detailed reports summarizing 
the design and verification process, highlighting key 
achievements and areas for potential improvement 

 

 

 
Burst operation : 

 
The AHB protocol supports a variety of data transfer types, 
including single transfers, undefined-length bursts, and fixed-length 
bursts of 4, 8, or 16 beats. These burst transfers can either be 
incrementing or wrapping. In an incrementing burst, the address of 
each subsequent transfer increases linearly, accessing consecutive 
memory locations. In contrast, a wrapping burst resets the address 
within a specific boundary once it reaches the end of the defined 
range, which is especially useful for circular buffer operations. 
The boundary at which wrapping occurs is determined by the size 
of each data transfer (controlled by the HSIZE signal) multiplied 
by the number of beats in the burst (defined by HBURST). For 
example, a 4-byte word transfer in a 4-beat wrapping burst will 
wrap at 16-byte boundaries, such as addresses 0x30 and 0x3C. If a 
manager (master device) encounters a limitation, such as a 1KB 
address boundary, it may not be able to initiate an incrementing 
burst. In such cases, it can fall back to performing a single transfer 
or a burst with a single beat followed by an undefined-length burst. 
Proper alignment is important in burst transfers. Each transfer in a 
burst must start at an address that matches the transfer size, meaning 
word (4-byte) and halfword (2-byte) transfers should be aligned to 
4-byte and 2-byte boundaries, respectively. Misaligned addresses 
can lead to incorrect behaviour or simulation errors. In fact, earlier 
versions of the AHB specification (Issues A and B) mandated that 
IDLE shared addresses must also be aligned to avoid such issues. 
The AHB protocol includes several types of burst modes. The most 
basic is the Single Data Transfer (SDT), where only one data item 
is moved per transaction. More advanced bursts include INCR4, 
INCR8, and INCR16, where the address increments by one word 
after each transfer, allowing for 4, 8, or 16 consecutive data 
movements. In the Wrap Burst mode, the address does not follow a 
straight path but instead loops within a set boundary, making it ideal 
for operations involving circular data buffers. 
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In the protocol, error responses are essential for maintaining the 
integrity and reliability of data transfers. When an error occurs 
during a transaction, the AHB protocol defines several 
mechanisms for handling and communicating these errors. 
Here are some common error responses in the 

AHB protocol: • 

OKAY: This response indicates that the transfer was successful 
without any errors. The master receives this response when the 
slave successfully processes the transaction. 

 
• ERROR: The ERROR response indicates that an error 
occurred during the transaction. This could be due to various 
reasons such as bus contention, data corruption, or a violation of 
the protocol's timing requirements. When a slave detects an 
error, it asserts the ERROR response to signal to the master that 
the transaction was unsuccessful. 

• RETIRE: The RETIRE response is typically used in split 
transactions where a master sends a request but does not wait for 
the response immediately. When the slave finishes processing 
the request, it sends a RETIRE response to indicate that the 
request has been completed. This allows the master to continue 
with other transactions without waiting for the response. 

• SPLIT: In a split transaction, if a slave cannot immediately 
process a request, it may respond with a SPLIT response to 
indicate that the transaction has been split into multiple phases. 
The master can then continue with other transactions while 
waiting for the completion of the split transaction. 

 
• RETRY: The RETRY response indicates that the slave is 
temporarily unable to process the transaction and requests the 
master to retry the transaction later. This could happen if the 
slave is busy or if there is contention on the bus. 

 
 
 
 
 
 
 
 
 

 
Fig. 4: Data transfer with error response 

 
 
 

 

Fig 5: Read transfer 
 

Fig 6:Write transfer 
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II. Locked Transfer 

When a master needs to perform a sequence of operations 
on a shared resource without interruption, it can initiate a 
locked transfer Lock Phase. 
The master initiates a locked transfer by issuing a request 
to acquire the lock on the shared resource. This request 
includes the LOCK signal asserted by the master. Response 
Phase,The slave responsible for managing the shared 
resource responds to the lock request. If the resource is 
available, the slave responds with an OKAY response, 
indicating that the lock has been acquired. If the resource is 
currently locked by another master, the slave responds with 
a RETRY or SPLIT response, indicating that the lock is not 
available at the moment. 
Another phase of locked transfer is the Transfer Phase. 

Once the lock is acquired, the master proceeds with the 
sequence of operations it needs to perform on the shared 
resource. These operations typically involve reading from 
or writing to the resource. Unlock Phase: After completing 
the sequence of operations, the master releases the lock by 
issuing a request to unlock the resource. 
 
 
 

        WAVEFORM 
                                        Figure 4: AHB Basic Transaction 

Basic transfers 
 

The system using the Advanced High-Performance Bus 
(AHB) protocol consists of several key signals and phases. 
The clock signal (HCLK) synchronizes the operations of the 
system, while the address phase involves transmitting 
address information on the HADDR [31:0] lines. In the data 
phase, data is either read from or written to the memory or 
peripheral on the HRDATA [31:0] lines. The write control 
signal (HWRITE) indicates whether the operation is a read or 
write, and the readiness signal (HREADY) shows whether 
the data phase can complete the current transfer. 
Transactions consist of an address phase followed by a data 
phase, with the HWRITE signal controlling the type of 
operation and the HREADY signal indicating the readiness of 
the bus to complete the transfer. 
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Figure 6: Schematic View  

Figure 5: FIXED Burst-type Transaction 
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      RESULTS 

The verification environment for the AHB protocol is built 
using System Verilog modules like Interface, Driver, Generator, 
Transaction, Scoreboard, Assertions, and Monitor. In this setup, 
test cases are created in the Generator by specifying a test-case 
number. The Driver sends these test-case packets to the Design 
Under Verification (DUV). The DUV then processes different 
burst-type transactions (such as single, incrementing, and 
wrapping bursts) according to the AHB protocol. 
The Monitor observes the outputs from the DUV and sends 
them to the Scoreboard. The Scoreboard compares these outputs 
with the reference (Golden Model) outputs. If the DUV output 
matches the Golden Model, the design is considered verified. 
All these steps are simulated using software like Questa, which 
generates waveforms to visualize the verification results. 
In simple terms: 
Test cases are generated and sent to the design. The design’s 
outputs are checked against expected outputs. If they match, the 
design works correctly. This process is repeated for different 
types of data bursts using the AHB protocol, and the results are 
visualized using simulation tools. displayed in Figures 4 to 8 

 

I. CONCLUSION 

Proofing of AHB Bus Protocol for single grasp-single Slave for 
constant, INCR, and WRAP has been accomplished by means 
of designing the Verification IP using the usage of system 

 

II. REFERENCES 

 
[1] Harsha Garua, Keshav Sharma, Chusen Duari, 
“verification of AMBA AHB bus protocol implementing incr 
and wrap burst using system Verilog”, International Journal of 
Research in Engineering and Technology, Volume-2 Issue 6, 
2019. 

 
[2] G. Kanaka Maha Lakshmi, M. Manasa Lakshmi, “AMBA- 
HB Protocol Verification by using System Verilog”, 
International Research Journal of Engineering and Technology 
Volume-3 Issue-8, 2016. 
[3] K. Lakshmi, M.M. Dasu, “Verification of the AHB20cp 
Bridge using System Verilog and effective bus Utilization 
calculation for AHB 3.0 Protocol”, International Journal for 
Research & Development in Technology, Volume-6, Issue-1, 
2016. 

[4] Rashmi Samanth, Subramanya G. Nayak, “Design and SV 
Based Verification of AMBA AHB Protocol for SOC 
Integration”, International Journal of Recent Technology and 
Engineering, Volume-8, Issue-2, 2019. 

 
 

[5] Dr. Priyanka Choudhury, Perrumalla Giridhar “Design and 
Verification of AMBA AHB”, IEEE International Conference 
on the Advanced Technology in Intelligent Control, 
Environment, Computing & Communication Engineering   
2019. 
 

[6]  P.Harishankar, Mr.Chosen Duari Mr.Ajay Sharma,“Design 

and Synthesis of Efficient FSM for Master and Slave 
Interface in AMBA AHB”, International Journal of 
Engineering Development and Research,  Volume 2, Issue 
3, 2014. 

 
[7] Shivakumar B.R Deeksha L, “Efficient Design and 
Implementation of AMBA AHB Bus Protocol using Verilog”, 
IEEE International Conference on Intelligent Sustainable 
System, 2019. 

[8] Mr. M. Naresh Kumar, K.Manikanta Sai Kishore “Design 
and Implementation of Efficient FSM for AHB Master and 
Arbiter”, International Journal and magazines of Engineering 
Technology, Management and Research. 2015. 

 
[9] Shraddha divekar, Archana Tiwari “Multichannel AMBA 

AHB with Multiple Arbitration Technique”, International 
Conference on Signal Processing and Communication, Apr 3- 
5, 2014. 

OEIL RESEARCH JOURNAL (ISSN:0029-862X) VOLUME 23 ISSUE 5 2025

PAGE NO: 286


