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Abstract

This paper analyzes a finite source single server Poisson arrival process,

negative exponentially distributed service time and queue with state dependent

parameter queue. The source size is N and if the arriving customer finds the

server is busy, the customer waits in a queue of size L(< N) . The services are

given in batches of size j, 1 ≤ j ≤ M(< N) . At the time of arrival, if the

number of customers in the service station is less than M , then the arrival joins

the service batch and if the number of customers in the service station is M ,

then the new arrival joins a waiting line. After completing service, the customers

leave from the service station singly instead of batches. Using Markov process

and recursive technique, we derive the stationary system length distributions at

arbitrary epoch. Various performance measures are presented. Statistical process

control for mean number of customers is carried out using control chart analysis.

Finally, some numerical results showing the effect of model parameters on key

performance measures of the system are presented.
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1 Introduction

A finite source queueing model is a type of queueing system where the potential

number of customers(or sources of requests) is limited to a fixed number. This contrasts

with infinite source model, where the arrival of new customers is assumed to be

unlimited. Finite source models are commonly used in situations where the customer

population is constrained, such as repair systems, healthcare facilities, or industrial

maintenance scenarios. In this system the number of potential customers(or sources)

is fixed at N . If a customer enters the system for service, the population of available

customers decreases. The arrival rate is dependent on the number of customers not

currently in the system since only those outside can generate new requests. If n

customers are already in the system, the arrival rate is proportional to N−n . Some real

life related situations are Repair and Maintenance Systems: Limited machines needing

service, Healthcare: Hospital beds or staff serve a finite patient population, Inventory

Systems: Restocking from limited warehouses and Call Centers: Small teams serve a

limited customer base.

In a bulk service queue the server manages large volumes of tasks, requests, or

operations in an organized manner. This can apply to various contexts, such as customer

service, IT operations, logistics, or any environment where multiple simultaneous tasks

need to be processed efficiently. A queue for bulk processing of data, updates, or tasks,

such as deploying software updates across multiple devices and scheduling and handling

bulk shipments in warehouses or delivery systems are some practical applications of bulk

service queues. The foremost work related to queue with single server bulk services by

Bailey(1954)(also Downton 1955). The authors considered that customers are served

in batches of not more than b. If, the server finds more than b customers waiting for

service, at a service completion point he takes a batch of b customers for service while

the others will wait. On the other hand, if he finds r(0 ≤ r ≤ b) customers, he takes

all the r customers as a batch for service. Neuts(1967) considered the same rule with

the restriction that (1 ≤ r ≤ b) , called bulk service rule. The two notable works in the

earlier stage are by Bloemena(1960), Jaiswal(1961). Fabens(1961) and Tackacs(1962)

considered a service rule in which services are given batches, is a random variable

Y . Some more notable works are by Medhi and Borthakur(1972), Medhi(1975, 1979),

Chaudhry and Templeton(1983), Chaudhry etal(1984), Briere and Chaudhry(1988) and

Chaudhry and Gupta(1992). Markovian systems with accessible batches for service

have been studied by Sivasamy(1990). In this rule, the services are given in batches

of fixed size, say K , and whereas at the beginning of a service, if there are less than

K customers in the system, the server starts service to all the customers present and

arrival are admitted to the serving batch, until the batch size becomes K . This rule is,

usually used in transportation systems.

In a queueing model, if there is no waiting space or a finite waiting space,

then such a queueing model is called loss model. In other words, a loss queueing
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model is a type of queueing system where arriving customers that find the system fully

occupied are not allowed to wait in a queue. Instead, they are immediately rejected or

”lost”. These models are often used to represent systems with no waiting space, such

as telephone networks, circuit-switched systems, or call centers where excess traffic is

dropped or system typically has a finite number of servers or channels, as in the case of

transportation(Parking Systems with a fixed number of spaces), Healthcare(Emergency

departments with limited beds) and Manufacturing(Systems with limited processing

stations and no buffer space). In all the above situations, once all are occupied, new

arrivals are blocked.

The need for statistical process control(SPC) arises if variability occurs in

manufacturing processes and also it is true that no two manufactured items are exactly

alike. When the random causes are alone present then we say that the process is ”in

control”, on the other hand, when assignable causes are present, the process is out of

control. During the process of production, the lots are sending for the quality control

unit and the items are queued for their turn. After examination the items leave the

system. In the process of production one of important factor is to sustain the quality.

It is done through controlling, improving and maintaining the quality of the product.

Theoretically, it is done through statistical quality control methods. The statistical

quality control comprises design of experiment(Montgomery, 2012) statistical process

control and acceptance sampling plan. Control chart is a statistical technique applied to

control deviations of any repetitive process. The cntrol chart contains central line (CL) ,

which shows the desired standard, upper control line (UCL) , which shows the upper

limit for the tolerance of desired standard and lower control line (LCL) , which shows

the lower limit for the tolerance of desired standard of the quality characteristics to be

observed for the process. Now CL = µ , UCL = µ + Lσ , LCL = µ − Lσ where L

is the distance of central limits from the CL expressed in standard units. The general

theory of control chart was first proposed by Shewhart, the corresponding control chart

is called Shewhart control chart. In the chart, the X axis represents the sample points

and Y axis represents the quality character. The distribution of the plotted statistic is

approximated by a normal distribution, with parameters mean and standard deviation

is the basic principle of Shwehart chart. This chart is called C1 chart. The parameters

of the C1 chart are CL = µ , UCL = µ + 3σ , LCL = µ − 3σ , where µ and σ

are the sample mean and standard deviation of the quality characters studied. Many

researchers contributed towards queueing theory. But a few works appears in the area

of combination of queueing theory and quality control. Shore(2000) constructed control

chart for M/M/S queue. Shore(2006) developed Shewhart like general control charts for

G/G/S queueing system. Khaparade and Dhabe(2010) obtained the control chart for

the queue length of M/M/1 system. Kalyanaraman and Shakila(2022) calculated the

performance of the systme using control chart analysis of a batch arrival heterogeneous

two server queue with breakdown, restricted admissibiliity, discouraged arrivals.

In this paper, we consider a finite source single server queue with Poisson arrival
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process, negative exponentially distributed service time. The service parameter is system

state dependent. The source size is N and if the arriving customer finds the server is

busy, the customer waits in a queue of size L(< N) . The services are given in batches

of size j, 1 ≤ j ≤ M(< N) . At the time of arrival, if number of customers in the service

station is less than M , then the arrival joins the service batch and if the number of

customers in the service station is M , then the new arrival joins a waiting line. After

completing service, the customers leave from the service singly instead of batches. The

model definition and the analysis are given in section 2.

2 Model and Analysis

In this section, we introduce the mathematical definition, relevant notations and the

analysis in transient state and steady state are given.

2.1 Model definition

The customers arrives from a source of size N . The arrival process follows Poisson

with rate λ . Service times are random variables, follows exponential distributed with

state dependent parameter i.e., depends on the number of customers undergoing service.

The service rule is: The services are given in Batches of variable size j(1 ≤ j ≤ M) and

the maximum number of customers the service station can accommodate is M(< N) .

In addition, the service batches are accessible batches. That is, at the time of arrival,

if number of customers in the service station is less than M , then the arrival joins the

service batch and if the number of customers in the service station is M , then the new

arrival joins a waiting line of capacity L(1 ≤ L < N) . If an arrival finds L customers in

the waiting line, it doesn’t join the waiting line (Loss to a system). In the waiting line,

the first in first out (FIFO) queue discipline is used. The services are given in batches

but the customers depart singly after completing service.

2.2 Notations

The following notations are introduced for the analysis: Let X(t) be the number

of cutomers in the Queue at time t and Y (t) be the number of customers in the

service station at time t . The two dimensional stochastic process {(X(t), Y (t)) : t ≥ 0}
is a Markov Process with state space S = {0, 1, 2, ..., L} × {0, 1, 2, ...,M} . Let

p(n,m, t) = Pr{X(t) = n, Y (t) = m} be the corresponding probability distribution

and let p(n,m) = limt→∞ p(n,m; t) be the corresponding steady state probability

distribution.
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2.3 The Transient Analysis

Using birth-death arguments the following differential-difference equations are

obtained:

p
′
(0, 0; t) = −Nλp(0, 0; t) + µ1p(0, 1; t) (2.1)

p
′
(0, n; t) = −[(N − n)λ+ nµn]p(0, n; t) + (N − n+ 1)λp(0, n− 1; t)

+(n+ 1)µn+1p(0, n+ 1; t); 1 ≤ n ≤ M − 1 (2.2)

p
′
(0,M ; t) = −[(N −M)λ+MµM ]p(0,M ; t)

+(N −M + 1)λp(0,M − 1; t) +MµMp(1,M ; t) (2.3)

p
′
(n,M ; t) = −[(N −M − n)λ+MµM ]p(n,M ; t) + (N −M − n+ 1)

λp(n− 1,M ; t) +MµMp(n+ 1,M ; t); 1 ≤ n ≤ L− 1 (2.4)

p
′
(L,M ; t) = −MµMp(L,M ; t) + (N −M − (L− 1))λp(L− 1,M ; t) (2.5)

The corresponding matrix form for equations (2.1) to (2.5) is

p
′
(t) = Ap(t) (2.6)

where,

A =



a0 µ1 . . . 0 0 . . . 0 0

b0 a1 . . . 0 0 . . . 0 0

0 b1 . . . 0 0 . . . 0 0

0 0 . . . 0 0 . . . 0 0
...

...
...

...
...

... 0 0

0 0 0 aM−1 MµM . . . 0 0

0 0 0 bM−1 aM . . . 0 0
...

...
...

...
...

... MµM 0

0 0 0 0 0 . . . aM+L−1 MµM

0 0 0 0 0 . . . bM+L−1 aM+L


where,

a0 = −Nλ

a1 = −[(N − 1)λ+ µ1]
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aM−1 = −[(N −M + 1)λ+ (M − 1)µM−1)]

aM = −[(N −M)λ+MµM ]

aM+L−1 = −[(N −M − L+ 1)λ+MµM ]

aM+L = −MµM

b0 = Nλ

b1 = (N − 1)λ

bM−1 = (N −M + 1)λ

bM+L−1 = (N −M − L+ 1)λ

p(t) = (p(0, 0; t), p(0, 1; t), ...p(0,M − 1; t), p(0,M ; t),

p(1,M ; t), ...p(L− 1,M ; t), p(L,M ; t))T (2.7)

Integrating the equation (2.6) and p
′
(t) is

d

dt
p(t) we get,

p
′
(t)

p(t)
= A (2.8)

p(t) = eAt.C (2.9)

At t = 0 , (2.9) becomes,

C = p(0) (2.10)

Therefore, Equation(2.9) together with (2.10) gives the time dependent solution for

the model and is,

p(t) = eAt.p(0) (2.11)

where p(0) is the initial probability vector.

For finding matrix exponential, Python provides sophisticated method powered

by the SciPy library, we use the coding in Python, and find the values of e At for various

values of t and fixing the parameters N = 20, L = 9,M = 10, µi(i = 1, 2, ..., 10) =

1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 . The probability vector p(t) is obtained using

p(t) = eAt .p(0), by taking the initial probability vector p(0) = [1, 0, ..., 0]
′
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2.4 The Steady State Analysis

In steady state, the following steady state equations are obtained from (2.1) to (2.5),

Nλp(0, 0) = µ1p(0, 1) (2.12)

[(N − n)λ+ nµn]p(0, n) = (N − n+ 1)λp(0, n− 1)

+(n+ 1)µn+1p(0, n+ 1); 1 ≤ n ≤ M − 1 (2.13)

[(N −M)λ+MµM ]p(0,M) = (N −M + 1)λp(0,M − 1) +MµMp(1,M) (2.14)

[(N −M − n)λ+MµM ]p(n,M) = (N −M − n+ 1)λp(n− 1,M)

+MµMp(n+ 1,M); 1 ≤ n ≤ L− 1 (2.15)

MµMp(L,M) = (N −M − L+ 1)λp(L− 1,M) (2.16)

and the normalization condition is,

p(0, 0) +
M∑

m=1

p(0,m) +
L∑

m=1

p(m,M) = 1 (2.17)

From (2.12) and (2.13) , we get,

p(0,M − 1) =
N(N − 1)(N − 2)...(N − (M − 2))λM−1

(M − 1)!µ1µ2...µM−1

p(0, 0) (2.18)

p(0,M) =
N(N − 1)(N − 2)...(N − (M − 1))λM

M !µ1µ2...µM

p(0, 0) (2.19)

From (2.14) ,

p(1,M) =
N(N − 1)(N − 2)...(N −M)λM+1

M !(MµM)µ1µ2...µM

p(0, 0) (2.20)

From (2.15) and (2.16) , we get,

p(L,M) =
N(N − 1)(N − 2)...(N − (M + (L− 1)))λM+L

M !(MµM)Lµ1µ2...µM

p(0, 0) (2.21)
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p(0, 0) =

{
1 +

M∑
m=1

N(N − 1)...(N − (m− 1)))λm

m!µ1µ2...µm

+
L∑

m=1

N(N − 1)...(N − (M + (m− 1)))λM+m

M !(MµM)mµ1µ2...µM

}−1

(2.22)

p(0, j) =
(
N
j

) j∏
i=1

ρip(0, 0), j = 1, 2, ...,M (2.23)

p(j,M) =
(

N
M+j

) M∏
i=1

ρi(ρM+1)
jp(0, 0), j = 1, 2, ..., L (2.24)

where,

ρi =
λ

µi

, ρM+1 =
λ

MµM

, i = 1, 2, ...,M

On simplification, p(0, 0) becomes,

p(0, 0) =

{
1 +

M∑
j=1

(
N
j

) j∏
i=1

ρi +
L∑

j=1

(
N

M+j

) M∏
i=1

ρi(ρM+1)
j

}−1

(2.25)

Equations (2.23), (2.24) together with equation (2.25) shows the steady state

probabilities of the models discussed in this paper.

2.5 Some Performance Measures

In this section some performance measures like mean number of customers in the

queue, in the system, in the service station and in the source, the idle probability are

derived both in the case of time dependent domain(transient case) and time independent

domain(stationary case) using statistical formulas.

2.5.1 Transient Case

1. Mean number of customers in the queue at time t

L1(t) =
L∑

n=0

np(n,M ; t) (2.26)

2. Mean number of customers in the system at time t
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L2(t) =
M∑
n=0

np(0, n; t) +
L∑

n=1

np(n,M ; t) (2.27)

3. Mean number of customers in the service station at time t

L3(t) =
M∑
n=0

np(0, n; t) +M
L∑

n=1

p(n,M ; t) (2.28)

4. Mean number of customers in the source at time t

L4(t) =
M∑
n=0

(N − n)p(0, n; t) +
L∑

n=0

(L− n)p(n,M ; t) (2.29)

5. Idle Probability at time t

p(0, 0; t) =

{
1 +

M∑
j=1

(
N
j

) j∏
i=1

ρi +
L∑

j=1

(
N

M+j

) M∏
i=1

ρi(ρM+1)
j

}−1

(2.30)

2.5.2 Stationary Case

1. Mean number of customers in the queue

L1 =
L∑

n=0

np(n,M) =
L∑

n=1

n
(

N
M+n

) M∏
i=1

ρi(ρM+1)
np(0, 0) (2.31)

2. Mean number of customers in the system

L2 =
M∑
n=0

np(0, n) +
L∑

n=1

np(n,M)

=
M∑
n=1

n
(
N
n

) n∏
i=1

ρip(0, 0) +
L∑

n=1

n
(

N
M+n

) M∏
i=1

ρi(ρM+1)
np(0, 0) (2.32)

3. Second moment of Mean number of customers in the system

L3 =
M∑
n=0

n2p(0, n) +
L∑

n=1

n2p(n,M)

=
M∑
n=1

n2
(
N
n

) n∏
i=1

ρip(0, 0) +
L∑

n=1

n2
(

N
M+n

) M∏
i=1

ρi(ρM+1)
np(0, 0) (2.33)
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4. Mean number of customers in the service station

L4 =
M∑
n=0

np(0, n) +M
L∑

n=1

p(n,M)

=
M∑
n=1

n
(
N
n

) n∏
i=1

ρip(0, 0) +M
L∑

n=1

(
N

M+n

) M∏
i=1

ρi(ρM+1)
np(0, 0) (2.34)

5. Mean number of customers in the source

L5 =
M∑
n=0

(N − n)p(0, n) +
L∑

n=0

(L− n)p(n,M)

=
M−1∑
n=0

(N − n)
(
N
n

) n∏
i=1

ρip(0, 0)

+
L∑

n=0

(L− n)
(

N
M+n

) M∏
i=1

ρi(ρM+1)
np(0, 0) (2.35)

6. Idle Probability

p(0, 0) =

{
1 +

M∑
j=1

(
N
j

) j∏
i=1

ρi +
L∑

j=1

(
N

M+j

) M∏
i=1

ρi(ρM+1)
j

}−1

(2.36)

3 Waiting Time Analysis

Let W represents the time spent by an arriving customer(Test Customer) in the

queue and W(t) be its cummulative distributive function. There are two cases (i) If the

Test Customer finds no one in the system, its waiting time is the service time in the

system. In this case W = 0 . (ii) If the Test Customer finds the service station is full

then the waiting time in the queue W > 0 . Using simple probabilistic arguments the

distribution of W is obtained as

(i) If W = 0 ,

W (0) = Pr{W = 0}

W (0) = Pr{M − 1 (or) less number of customers in the service station}

W (0) =
M−1∑
n=0

(
N
n

) n∏
i=1

ρip(0, 0) (3.1)
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(ii) If W > 0 ,

W (t) = Pr{0 < W ≤ t}

W (t) =
∑L

n=M p(n−M,M)
∫ t

0
e−MµMx.MµMx.

(MµM)n−M

(n−M)!
dx (3.2)

Now,

∫ t

0
e−MµMx.MµMx.

(MµM)n−M

(n−M)!
dx = 1−

∑n−M
i=0 (MµM t)i.

e−MµM t

i!

The cummulative distribution function for waiting time random variable W is

W (t) =
∑L

n=M p(n−M,M)

{
1−

∑n−M
i=0 (MµM t)i.

e−MµM t

i!

}

Now differentiating W (t) with respect to t we get,

d

dt
(W (t)) =

∑L
n=M p(n−M,M)

{
−
∑n−M

i=0

(MµM)i

i!
(ti.(−MµM)e−MµM t

+e−MµM t.iti−1)

}

=
∑L

n=M p(n−M,M)

{∑n−M
i=0

(MµM )i+1.e−MµMt.ti

i!

−
∑n−M

i=1
(MµM )i.e−MµMt.ti−1

(i−1)!

}

3.1 Expected Mean Waiting Time

E(W ) =
∫∞
0

tdW (t) (3.3)

=
∑L

n=M p(n−M,M)

{∑n−M
i=0

(MµM )i+1

i!

∫∞
0

e−MµM t.ti+1dt

−
∑L

n=M p(n−M,M)
∑n−M

i=1
(MµM )i

(i−1)!

∫∞
0

e−MµM t.tidt

}

Now,
∫∞
0

e−MµM t.ti+1dt = (i+1)!
(MµM )i+2 and

∫∞
0

e−MµM t.tidt = i!
(MµM )i+1
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Substituting above values in equation (3.2) we get,

E(W ) =
∑L

n=M p(n−M,M)
∑n−M

i=0
(MµM )i+1

i!
× (i+1)!

(MµM )i+2

−
∑L

n=M p(n−M,M)
∑n−M

i=1
(MµM )i

(i−1)!
× i!

(MµM )i+1

E(W ) =
∑L

n=M p(n−M,M)
∑n−M

i=0
1

MµM

E(W ) =
∑L

n=M p(n−M,M) (n−M+1)
MµM

(3.4)

Equation (3.4) shows the expected mean waiting time of a customer.

4 The Numerical Study

In this section, we presents some numerical illustrations to show the effect of the

parameters on the model, both transient case and steady state case in this section. By

taking particular values to the parameters, λ , µi , M , L and N , the probabilities and

performance measures are calculated and are presented in the following subsections.

4.1 Transient Case

For finding matrix exponential, Python provides sophisticated method powered

by the SciPy library. We use the coding in the Python, and we find the value of

eAt for various values of t and fixing the parameters N = 20, L = 9,M = 10, λ =

5, µi(i = 1, 2, ...10) = 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 . The probability vector p(t)

is obtained using p(t) = eAt , by taking the initial probability vector p(0) = [1, 0, 0, ...0]
′
.

The corresponding performance measures are calculated using the formulas in the

subsection 2.5.1. The transient probabilities of various values of t are presented in

table 4.1 and 4.2 and the performance measures are presented in table 4.3. The first

row of table 4.1 and 4.2 show the idle probability.
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Table 4.1: The Transient State Probabilities
N=20, L=9, M=10, λ=5, µi(i=1, 2, ... 10)=1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9

p(i,j;t) t=0.1 t=0.2 t=0.3 t=0.4 t=0.5

p(0,0;t) 8.09636×10−05 3.18357×10−08 1.30281×10−10 6.17838×10−12 1.24395×10−12

p(0,1;t) 1.01094×10−03 1.02241×10−06 7.59276×10−09 4.86133×10−10 1.09355×10−10

p(0,2;t) 5.93189×10−03 1.50809×10−05 1.96732×10−07 1.66146×10−08 4.14725×10−09

p(0,3;t) 2.17513×10−02 1.36035×10−04 3.02637×10−06 3.30082×10−07 9.09015×10−08

p(0,4;t) 5.59062×10−02 8.42640×10−04 3.10994×10−05 4.29673×10−06 1.29935×10−06

p(0,5;t) 1.07076×10−01 3.81395×10−03 2.27409×10−04 3.91025×10−05 1.29382×10−05

p(0,6;t) 1.58584×10−01 1.30976×10−02 1.22879×10−03 2.58809×10−04 9.34783×10−05

p(0,7;t) 1.85996×10−01 3.49437×10−02 5.01998×10−03 1.27747×10−03 5.03223×10−04

p(0,8;t) 1.75455×10−01 7.34125×10−02 1.56978×10−02 4.77536×10−03 2.05358×10−03

p(0,9;t) 1.34318×10−01 1.21766×10−01 3.76847×10−02 1.36227×10−02 6.41819×10−03

p(0,10;t) 8.30486×10−02 1.56954×10−01 6.88885×10−02 2.96581×10−02 1.54246×10−02

p(1,10;t) 4.30139×10−02 1.71013×10−01 1.08150×10−01 5.65055×10−02 3.29169×10−02

p(2,10;t) 1.86098×10−02 1.57556×10−01 1.45992×10−01 9.41443×10−02 6.21872×10−02

p(3,10;t) 6.68068×10−03 1.22039×10−01 1.68443×10−01 1.36146×10−01 1.03081×10−01

p(4,10;t) 1.96808×10−03 7.85983×10−02 1.64180×10−01 1.68714×10−01 1.47866×10−01

p(5,10;t) 4.67930×10−04 4.13757×10−02 1.32792×10−01 1.75835×10−01 1.80055×10−01

p(6,10;t) 8.75968×10−05 1.73560×10−02 8.68268×10−02 1.50073×10−01 1.81191×10−01

p(7,10;t) 1.24321×10−05 5.58212×10−03 4.41475×10−02 1.00920×10−01 1.44999×10−01

p(8,10;t) 1.25767×10−06 1.29510×10−03 1.64603×10−02 5.05137×10−02 8.71322×10−02

p(9,10;t) 8.29812×10−08 2.02527×10−04 4.22747×10−03 1.75120×10−02 3.60646×10−02

Total Probability 0.91695 1.00000 1.00000 0.999999 1.00000

Table 4.2: The Transient State Probabilities
N=20, L=9, M=10, λ=5, µi(i=1, 2, ... 10)=1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9

p(i,j;t) t=0.6 t=0.7 t=0.8 t=0.9 t=1

p(0,0;t 4.69022×10−13 2.45094×10−13 1.58354×10−13 1.18682×10−13 9.86076×10−14

p(0,1;t) 4.32189×10−11 2.32105×10−11 1.52749×10−11 1.15948×10−11 9.71692×10−12

p(0,2;t) 1.71702×10−09 9.48096×10−10 6.35831×10−10 4.88973×10−10 4.13393×10−10

p(0,3;t) 3.94149×10−08 2.23911×10−08 1.53108×10−08 1.19330×10−08 1.01796×10−08

p(0,4;t) 5.90154×10−07 3.45201×10−07 2.40828×10−07 1.90308×10−07 1.63851×10−07

p(0,5;t) 6.15940×10−06 3.71361×10−06 2.64541×10−06 2.12059×10−06 1.84325×10−06

p(0,6;t) 4.67000×10−05 2.90615×10−05 2.11592×10−05 1.72163×10−05 1.51132×10−05

p(0,7;t) 2.64322×10−04 1.70074×10−04 1.26714×10−04 1.04727×10−04 9.28860×10−05

p(0,8;t) 1.13732×10−03 7.58365×10−04 5.79059×10−04 4.86578×10−04 4.36259×10−04

p(0,9;t) 3.76345×10−03 2.60848×10−03 2.04516×10−03 1.74923×10−03 1.58645×10−03

p(0,10;t) 9.63558×10−03 6.97065×10−03 5.62609×10−03 4.90528×10−03 4.50402×10−03

p(1,10;t) 2.21170×10−02 1.67982×10−02 1.40055×10−02 1.24726×10−02 1.16075×10−02

p(2,10;t) 4.52822×10−02 3.62633×10−02 3.13041×10−02 2.85085×10−02 2.69065×10−02

p(3,10;t) 8.18687×10−02 6.93704×10−02 6.21099×10−02 5.78887×10−02 5.54274×10−02

p(4,10;t) 1.28837×10−01 1.15860×10−01 1.07743×10−01 1.02833×10−01 9.99070×10−02

p(5,10;t) 1.73052×10−01 1.65614×10−01 1.60150×10−01 1.56587×10−01 1.54380×10−01

p(6,10;t) 1.93100×10−01 1.97150×10−01 1.98422×10−01 1.98785×10−01 1.98869×10−01

p(7,10;t) 1.72194×10−01 1.87908×10−01 1.96906×10−01 2.02086×10−01 2.05087×10−01

p(8,10;t) 1.15661×10−01 1.34905×10−01 1.47036×10−01 1.54428×10−01 1.58853×10−01

p(9,10;t) 5.30338×10−02 6.55897×10−02 7.39230×10−02 7.91476×10−02 8.23251×10−02

Total Probability 0.99999 0.99999 1.00000 1.00000 0.99999
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Table 4.3: The system performance measures
N = 20, L = 9,M = 10, λ = 5, µi(i = 1, 2, ...10) = 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9

t 0.1 0.2 0.3 0.4 0.5

L1(t) 0.11119 1.52891 3.22587 4.37586 5.08205

L2(t) 6.64479 5.12772 4.42328 4.84396 5.31464

L3(t) 7.24202 9.54899 9.90960 9.97174 9.98752

L4(t) 12.49300 8.17015 5.92443 4.67239 3.93952

E(W (t)) 0.02224 0.30578 0.64517 0.87517 1.01641

t 0.6 0.7 0.8 0.9 1.0

L1(t) 5.50545 5.75675 5.90513 5.99249 6.04380

L2(t) 5.64694 5.85739 5.98546 6.06203 6.10736

L3(t) 9.99295 9.99523 9.99633 9.99690 9.99719

L4(t) 3.50683 3.25158 3.10133 3.01301 2.96114

E(W (t)) 1.10109 1.15135 1.18103 1.19850 1.20876

In the figure 4.4 for varying values of t , the mean length L1(t), L2(t), L3(t), L4(t) are

drawn as graphs. In the figure 4.5, the graph of expected waiting time using Little’s

Law are drawn.

0.2 0.4 0.6 0.8 1
0
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Figure: 4.4 Mean number of customers
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Figure: 4.5 Mean waiting time

4.2 Steady State Case

we calculated the stationary probabilities and the performance measures obtained

in subsection 2.5.2. For the analysis, we vary the arrival rate λ from 1 to 10. The

steady state probabilites are presented in tables 4.6 and 4.7. The corresponding

system performance measures are presented in tables 4.8. In the figure 4.9 the system

performance measures L1, L2, L3 , L4 and L5 are shown as graphs and the mean waiting

time is shown in graph 4.10
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Table 4.6: The Steady State Probabilities
N=20, L=9, M=10, µi(i=1, 2, ... 10)=1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9

pi λ=1 λ=2 λ=3 λ=4 λ=5

p(0,0) 1.47986×10−05 2.48021×10−08 1.57922×10−10 2.43566×10−12 7.35657×10−14

p(0,1) 2.95972×10−04 9.92082×10−07 9.47534×10−09 1.94853×10−10 7.35657×10−12

p(0,2) 2.55612×10−03 1.71360×10−05 2.45497×10−07 6.73128×10−09 3.17670×10−10

p(0,3) 1.27806×10−02 1.71360×10−04 3.68246×10−06 1.34626×10−07 7.94175×10−09

p(0,4) 4.17827×10−02 1.12043×10−03 3.61164×10−05 1.76049×10−06 1.29817×10−07

p(0,5) 9.55033×10−02 5.12196×10−03 2.47656×10−04 1.60959×10−05 1.48362×10−06

p(0,6) 1.59172×10−01 1.70732×10−02 1.23828×10−03 1.07306×10−04 1.23635×10−05

p(0,7) 1.98965×10−01 4.26830×10−02 4.64354×10−03 5.36530×10−04 7.72721×10−05

p(0,8) 1.90187×10−01 8.15998×10−02 1.33160×10−02 2.05144×10−03 3.69315×10−04

p(0,9) 1.40880×10−01 1.20889×10−01 2.95912×10−02 6.07833×10−03 1.36783×10−03

p(0,10) 8.15618×10−02 1.39976×10−01 5.13953×10−02 1.40761×10−02 3.95952×10−03

p(1,10) 4.29273×10−02 1.47343×10−01 8.11504×10−02 2.96340×10−02 1.04198×10−02

p(2,10) 2.03340×10−02 1.39589×10−01 1.15319×10−01 5.61486×10−02 2.46785×10−02

p(3,10) 8.56168×10−03 1.17548×10−01 1.45666×10−01 9.45660×10−02 5.19546×10−02

p(4,10) 3.15430×10−03 8.66145×10−02 1.60999×10−01 1.39360×10−01 9.57059×10−02

p(5,10) 9.96095×10−04 5.47039×10−02 1.52526×10−01 1.76034×10−01 1.51115×10−01

p(6,10) 2.62130×10−04 2.87915×10−02 1.20415×10−01 1.85299×10−01 1.98835×10−01

p(7,10) 5.51853×10−05 1.21227×10−02 7.60516×10−02 1.56041×10−01 2.09300×10−01

p(8,10) 8.71347×10−06 3.82824×10−03 3.60245×10−02 9.85525×10−02 1.65237×10−01

p(9,10) 9.17208×10−07 8.05945×10−04 1.13761×10−02 4.14958×10−02 8.69668×10−02

Total Probability 0.999985 1 1 1 1

Table 4.7: The Steady State Probabilities
N=20, L=9, M=10, µi(i=1, 2, ... 10)=1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9

pi λ=6 λ=7 λ=8 λ=9 λ=10

p(0,0) 3.68915×10−15 2.72596×10−16 2.72682×10−17 3.47436×10−18 5.39147×10−19

p(0,1) 4.42698×10−13 3.81634×10−14 4.36292×10−15 6.25384×10−16 1.07829×10−16

p(0,2) 2.29398×10−11 2.30715×10−12 3.01438×10−13 4.86094×10−14 9.31254×10−15

p(0,3) 6.88194×10−10 8.07503×10−11 1.20575×10−11 2.18742×10−12 4.65627×10−13

p(0,4) 1.34992×10−08 1.84794×10−09 3.15351×10−10 6.43607×10−11 1.52224×10−11

p(0,5) 1.85132×10−07 2.95670×10−08 5.76641×10−09 1.32399×10−09 3.47941×10−10

p(0,6) 1.85132×10−06 3.44949×10−07 7.68855×10−08 1.98599×10−08 5.79902×10−09

p(0,7) 1.38849×10−05 3.01830×10−06 7.68855×10−07 2.23424×10−07 7.24877×10−08

p(0,8) 7.96339×10−05 2.01960×10−05 5.87948×10−06 1.92210×10−06 6.92897×10−07

p(0,9) 3.53929×10−04 1.04720×10−04 3.48414×10−05 1.28140×10−05 5.13257×10−06

p(0,10) 1.22944×10−03 4.24391×10−04 1.61370×10−04 6.67677×10−05 2.97149×10−05

p(1,10) 3.88243×10−03 1.56355×10−03 6.79455×10−04 3.16268×10−04 1.56394×10−04

p(2,10) 1.10343×10−02 5.18439×10−03 2.57477×10−03 1.34830×10−03 7.40815×10−04

p(3,10) 2.78761×10−02 1.52803×10−02 8.67293×10−03 5.10935×10−03 3.11922×10−03

p(4,10) 6.16208×10−02 3.94071×10−02 2.55623×10−02 1.69415×10−02 1.14919×10−02

p(5,10) 1.16755×10−01 8.71105×10−02 6.45785×10−02 4.81496×10−02 3.62901×10−02

p(6,10) 1.84350×10−01 1.60467×10−01 1.35955×10−01 1.14039×10−01 9.55002×10−02

p(7,10) 2.32864×10−01 2.36477×10−01 2.28976×10−01 2.16073×10−01 2.01053×10−01

p(8,10) 2.20608×10−01 2.61370×10−01 2.89233×10−01 3.07051×10−01 3.17452×10−01

p(9,10) 1.39331×10−01 1.92588×10−01 2.43565×10−01 2.90891×10−01 3.34160×10−01

Total Probability 1 1 1 1 1
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Table 4.8: The system performance measures
N = 20, L = 9,M = 10, µi(i = 1, 2, ...10) = 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9

λ 1 2 3 4 5

L1 0.12892 1.69463 3.80085 5.22921 6.11674

L2 6.77014 5.26705 4.72898 5.44558 6.17223

L3 50.69000 38.3235 28.1986 33.7831 41.4538

L4 7.93037 20.5187 38.9366 52.5085 61.2229

L5 13.12460 9.48792 5.83877 3.93266 2.92708

E(W ) 0.01509 0.12768 0.25009 0.32739 0.37447

λ 6 7 8 9 10

L1 6.69482 7.09334 7.3815 7.59802 7.76585

L2 6.71105 7.09871 7.38348 7.59882 7.7662

L3 47.8128 52.7119 56.4858 59.4407 61.7993

L4 66.9645 70.9388 73.81700 75.98100 77.6588

L5 2.31848 1.91118 1.62020 1.40268 1.23446

E(W ) 0.40497 0.42596 0.44113 0.45253 0.46136
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Figure: 4.9 Mean number of customers
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Figure: 4.10 Mean waiting time

5 Control Chart Analysis

In this section, the statistical process control is carried out using control chart

analysis. Several types of control charts are available in the literature, but whatever

may be the type, all have some few common characters. They contains the upper and

lower control limits within which all observations should lie, if the process is in control.

There is a central line(CL ), which is usually considered to be the target value for the

process, they generally show the numbers along the vertical axis to define the values of

the control limits and if the observations are beyond these points, the charts may be

tailored to suit the requirements of the process. A typical control chart has all points lies

nearly within the upper control limit(UCL ) and the lower control limit(LCL ). The

control chart for number of customers in the system are obtained using the following

control limits:

• CL = L2 (5.1)

• UCL = L2 + 3
√
V (5.2)

• LCL = L2 − 3
√
V (5.3)

where, V = L3 − L2
2

The UCL and LCL should be symmetric around CL . But in some cases, the

LCL becomes negative. In this case, the LCL can be rounded to zero. The numerical

results are obtained adhere with the stability condition. Our computational experience

shows that the number of customers in all the samples are distributed between UCL

and LCL , in particular very nearest to CL . In this study we never experience that

the situation is out of control.
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Table 5.1: The Control Chart Table(µ=1.9)

λ LCL CL UCL

1 0.15978 6.77014 13.38050

2 -4.49180≈0 5.26705 15.02590

3 -2.51796≈0 4.72898 11.97592

4 -0.65022≈0 5.44558 11.54138

5 0.67529 6.17223 11.66917

6 1.71390 6.71105 11.70820

7 2.52903 7.09871 11.66839

8 3.17275 7.38348 11.59421

9 3.68887 7.59882 11.50877

10 4.10984 7.76620 11.42256

Figure 5.2: Control chart for number of customers(µ=1.9)
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Table 5.3: The Control Chart Table(µ=2.0)

λ LCL CL UCL

1 0.34063 6.8039 13.26717

2 -4.49873≈0 5.43910 15.37693

3 -2.88420≈0 4.67298 12.23016

4 -0.96340≈0 5.28363 11.53066

5 0.37418 6.00790 11.64162

6 1.42823 6.56775 11.70727

7 2.26583 6.97691 11.68799

8 2.93291 7.27946 11.62601

9 3.47014 7.50892 11.54771

10 3.90959 7.68750 11.46541

Figure 5.4: Control chart for number of customers(µ=2.0)
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A numerical model is provided to analyze the performance of the queue using control

chart analysis with reference to difference arrival rates, production times(service times),

and waiting space size. The corresponding graphs are drawn and are given in Figures

5.2 and 5.4. The values of CL , UCL and LCL are obtained from the formulas in

the equations (5.1),(5.2) and (5.3). The values are also tabulated and are shown in the

tables 5.1 and 5.3. The UCL and LCL should be symmetric around CL . But in

some cases, the LCL becomes negative. In this case, the LCL can be rounded to zero.

Our computational experience shows that the number of customers in all the samples is

distributed between UCL and LCL , in particular very nearest to CL . In this study

we never experience that the situation is out of control.

6 Conclusion

In this paper, control limits have been obtained for number of customers in the system

of the given queueing model. Numerical illustrations are provided. Our computational

experience shows that, the process control shows to be under control.
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