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Abstract

This paper analyzes a finite source single server Poisson arrival process,
negative exponentially distributed service time and queue with state dependent
parameter queue. The source size is N and if the arriving customer finds the
server is busy, the customer waits in a queue of size L(< N). The services are
given in batches of size j,1 < j < M(< N). At the time of arrival, if the
number of customers in the service station is less than M , then the arrival joins
the service batch and if the number of customers in the service station is M ,
then the new arrival joins a waiting line. After completing service, the customers
leave from the service station singly instead of batches. Using Markov process
and recursive technique, we derive the stationary system length distributions at
arbitrary epoch. Various performance measures are presented. Statistical process
control for mean number of customers is carried out using control chart analysis.
Finally, some numerical results showing the effect of model parameters on key
performance measures of the system are presented.

Keywords: Finite Source Queue-Single Departure-Batch Service-Accessible Batch-
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1 Introduction

A finite source queueing model is a type of queueing system where the potential
number of customers(or sources of requests) is limited to a fixed number. This contrasts
with infinite source model, where the arrival of new customers is assumed to be
unlimited. Finite source models are commonly used in situations where the customer
population is constrained, such as repair systems, healthcare facilities, or industrial
maintenance scenarios. In this system the number of potential customers(or sources)
is fixed at N . If a customer enters the system for service, the population of available
customers decreases. The arrival rate is dependent on the number of customers not
currently in the system since only those outside can generate new requests. If n
customers are already in the system, the arrival rate is proportional to N —n. Some real
life related situations are Repair and Maintenance Systems: Limited machines needing
service, Healthcare: Hospital beds or staff serve a finite patient population, Inventory
Systems: Restocking from limited warehouses and Call Centers: Small teams serve a
limited customer base.

In a bulk service queue the server manages large volumes of tasks, requests, or
operations in an organized manner. This can apply to various contexts, such as customer
service, I'T operations, logistics, or any environment where multiple simultaneous tasks
need to be processed efficiently. A queue for bulk processing of data, updates, or tasks,
such as deploying software updates across multiple devices and scheduling and handling
bulk shipments in warehouses or delivery systems are some practical applications of bulk
service queues. The foremost work related to queue with single server bulk services by
Bailey(1954)(also Downton 1955). The authors considered that customers are served
in batches of not more than b. If, the server finds more than b customers waiting for
service, at a service completion point he takes a batch of b customers for service while
the others will wait. On the other hand, if he finds 7(0 < r < b) customers, he takes
all the r customers as a batch for service. Neuts(1967) considered the same rule with
the restriction that (1 < r < b), called bulk service rule. The two notable works in the
earlier stage are by Bloemena(1960), Jaiswal(1961). Fabens(1961) and Tackacs(1962)
considered a service rule in which services are given batches, is a random variable
Y . Some more notable works are by Medhi and Borthakur(1972), Medhi(1975, 1979),
Chaudhry and Templeton(1983), Chaudhry etal(1984), Briere and Chaudhry(1988) and
Chaudhry and Gupta(1992). Markovian systems with accessible batches for service
have been studied by Sivasamy(1990). In this rule, the services are given in batches
of fixed size, say K, and whereas at the beginning of a service, if there are less than
K customers in the system, the server starts service to all the customers present and
arrival are admitted to the serving batch, until the batch size becomes K . This rule is,
usually used in transportation systems.

In a queueing model, if there is no waiting space or a finite waiting space,
then such a queueing model is called loss model. In other words, a loss queueing

PAGE NO: 48


user
Textbox


OEIL RESEARCH JOURNAL (ISSN:0029-862X) VOLUME 22 ISSUE 12 2024

model is a type of queueing system where arriving customers that find the system fully
occupied are not allowed to wait in a queue. Instead, they are immediately rejected or
"lost”. These models are often used to represent systems with no waiting space, such
as telephone networks, circuit-switched systems, or call centers where excess traffic is
dropped or system typically has a finite number of servers or channels, as in the case of
transportation(Parking Systems with a fixed number of spaces), Healthcare(Emergency
departments with limited beds) and Manufacturing(Systems with limited processing
stations and no buffer space). In all the above situations, once all are occupied, new
arrivals are blocked.

The need for statistical process control(SPC) arises if variability occurs in
manufacturing processes and also it is true that no two manufactured items are exactly
alike. When the random causes are alone present then we say that the process is "in
control”, on the other hand, when assignable causes are present, the process is out of
control. During the process of production, the lots are sending for the quality control
unit and the items are queued for their turn. After examination the items leave the
system. In the process of production one of important factor is to sustain the quality.
It is done through controlling, improving and maintaining the quality of the product.
Theoretically, it is done through statistical quality control methods. The statistical
quality control comprises design of experiment(Montgomery, 2012) statistical process
control and acceptance sampling plan. Control chart is a statistical technique applied to
control deviations of any repetitive process. The cntrol chart contains central line (C'L) ,
which shows the desired standard, upper control line (UCL), which shows the upper
limit for the tolerance of desired standard and lower control line (LC'L), which shows
the lower limit for the tolerance of desired standard of the quality characteristics to be
observed for the process. Now CL = pu, UCL = p+ Lo, LCL = yu — Lo where L
is the distance of central limits from the C'L expressed in standard units. The general
theory of control chart was first proposed by Shewhart, the corresponding control chart
is called Shewhart control chart. In the chart, the X axis represents the sample points
and Y axis represents the quality character. The distribution of the plotted statistic is
approximated by a normal distribution, with parameters mean and standard deviation
is the basic principle of Shwehart chart. This chart is called C; chart. The parameters
of the € chart are CL = u, UCL = p+ 30, LCL = p — 30, where p and o
are the sample mean and standard deviation of the quality characters studied. Many
researchers contributed towards queueing theory. But a few works appears in the area
of combination of queueing theory and quality control. Shore(2000) constructed control
chart for M/M/S queue. Shore(2006) developed Shewhart like general control charts for
G/G/S queueing system. Khaparade and Dhabe(2010) obtained the control chart for
the queue length of M/M/1 system. Kalyanaraman and Shakila(2022) calculated the
performance of the systme using control chart analysis of a batch arrival heterogeneous
two server queue with breakdown, restricted admissibiliity, discouraged arrivals.

In this paper, we consider a finite source single server queue with Poisson arrival
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process, negative exponentially distributed service time. The service parameter is system
state dependent. The source size is N and if the arriving customer finds the server is
busy, the customer waits in a queue of size L(< N). The services are given in batches
of size j,1 < j < M(< N). At the time of arrival, if number of customers in the service
station is less than M, then the arrival joins the service batch and if the number of
customers in the service station is M , then the new arrival joins a waiting line. After
completing service, the customers leave from the service singly instead of batches. The
model definition and the analysis are given in section 2.

2 Model and Analysis

In this section, we introduce the mathematical definition, relevant notations and the
analysis in transient state and steady state are given.

2.1 Model definition

The customers arrives from a source of size N . The arrival process follows Poisson
with rate A. Service times are random variables, follows exponential distributed with
state dependent parameter i.e., depends on the number of customers undergoing service.
The service rule is: The services are given in Batches of variable size j(1 < j < M) and
the maximum number of customers the service station can accommodate is M(< N).
In addition, the service batches are accessible batches. That is, at the time of arrival,
if number of customers in the service station is less than M ;| then the arrival joins the
service batch and if the number of customers in the service station is M , then the new
arrival joins a waiting line of capacity L(1 < L < N). If an arrival finds L customers in
the waiting line, it doesn’t join the waiting line (Loss to a system). In the waiting line,
the first in first out (FIFO) queue discipline is used. The services are given in batches
but the customers depart singly after completing service.

2.2 Notations

The following notations are introduced for the analysis: Let X(t) be the number
of cutomers in the Queue at time ¢ and Y (¢) be the number of customers in the
service station at time ¢. The two dimensional stochastic process {(X(t),Y(¢)) : ¢ > 0}
is a Markov Process with state space S = {0,1,2,...,L} x {0,1,2,...,M}. Let
p(n,m,t) = Pr{X(t) = n,Y(t) = m} be the corresponding probability distribution
and let p(n,m) = lim; .. p(n,m;t) be the corresponding steady state probability
distribution.
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2.3 The Transient Analysis

Using birth-death arguments the following differential-difference equations are

obtained:
p’(O, 0;t) = —NAp(0,0;t) + p1p(0, 1;¢) (2.1)
P (0,n;t) = =[(N = n)A + npu]p(0, n; 1) + (N — n+ 1)Ap(0,n — 1;1)

|
+(n+ 1) pp1p(0,n + 1;1); 1<n<M-1 (2.2)

P (0, M;t) = —[(N — M)A+ Mpupp(0, M; )
+(N — M + 1)Ap(0, M — 15t) + M pupp(1, M;t) (2.3)

p(n, M;t) = —[(N — M —n)\+ Muyp(n, M;t) + (N — M —n + 1)
Ap(n — 1, M;t) + Mpuypn+1,M;t); 1<n<L-1 (2.4)

p'(L, M;t) = =Mpunp(L, M;t) + (N = M — (L = 1)Ap(L — 1, M) (2.5)

The corresponding matrix form for equations (2.1) to (2.5) is

p'(t) = Ap(t) (2.6)
where,
[ag 111 0 0 0 0 |
b() aq 0 0 0 0
0 b 0 0 0 0
0 O 0 0 0 0
. : 0 0
0 apr—1 M,MM 0 0
0 bM—l aps 0 0
0 0 0 0 0 cee AMaL—1 M/J,M
_O 0 0 0 0 bM+L71 a/M+L_
where,
ag = —NA

ar = —[(N — DA + 1]
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apy-1=—[(N—=M+ DA+ (M —1)pup—1)]
ay = —[(N — M)+ M pupy]
AM+L—-1 = —[(N— M — L+ 1))\+M,LLM]

ap+r = —Mppy
bo = NA
by = (N —1)\

bay—1 = (N —=M+1)A
barsr1 = (N — M —L+1)A

p(t) = (p(0,0;t), p(0, 1;¢),..p(0, M — 1;),p(0, M; ),

p(1, M;t),..p(L — 1, M;t),p(L, M;t))T

/ d
Integrating the equation (2.6) and p (t)is —p(t) we get,

dt
P(t) _
TOR.
p(t) = et.C

At t =0, (2.9) becomes,

C = p(0)

(2.7)

(2.8)

(2.9)

(2.10)

Therefore, Equation(2.9) together with (2.10) gives the time dependent solution for

the model and is,

p(t) = e*.p(0)

where p(0) is the initial probability vector.

(2.11)

For finding matrix exponential, Python provides sophisticated method powered
by the SciPy library, we use the coding in Python, and find the values of e 4 for various
values of t and fixing the parameters N = 20,L = 9, M = 10,u;(i = 1,2,...,10) =
1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9. The probability vector p(t) is obtained using

p(t) = e p(0), by taking the initial probability vector p(0) = [1,0, ...,0]'
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2.4 The Steady State Analysis

In steady state, the following steady state equations are obtained from (2.1) to (2.5),

NAp(0,0) = p1p(0,1)

[(N —n)X+nu,lp(0,n) = (N —n+ 1)Ap(0,n — 1)

+(n + 1) ptp1p(0,n + 1); 1<n<M-1

[(N = M)A+ Mup(0, M) = (N — M + 1D)Ap(0, M — 1) + M puprp(1, M)

(N =M —n)\+ Mupylpin, M) = (N —M —n+ D)Ap(n—1, M)
+Mpypn+1,M); 1<n<L-1

and the normalization condition is,

M L

p(0,0) + > p(0,m) + > p(m, M) =1

m=1 m=1

From (2.12) and (2.13), we get,

N(N —-1)(N =2)... (N — (M — 2)))\M71
(M - 1)!N1M2-o-MM_1

p(0, M —1) = p(0,0)

N(N = 1)(N = 2)..(N — (M — 1))AM
M!papa...par

p(0, M) = p(0,0)

From (2.14),

N(N = 1)(N — 2)...(N — M)A\M+1
MM pung) puapa--fins

p(1, M) = p(0,0)

From (2.15) and (2.16), we get,

N(N —1)(N —2)...(N — (M + (L —1)))\M+L

L, M) =
o ) MUV M par)F o poar

p(0,0)
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N(N = 1)..(N = (m — 1)))\™

p(0,0) = {1+ 5

m=1 mlpfia.. fm
-1
L N(N—-1)...(N—(M+ —1)))A\M+m
s ( ) '( (M + (m —1))) (2.22)
m=1 MM g )™ pa pro--fine
J
p(0,5) = (5) I pip(0,0), j=12,...,M (2.23)
. N M ; .
p(]aM) = (MJr]) 1:[1pl(pM+1)Jp<070)7 J = ]-a27 7L (224>
where,
A A
P = —, = —, =1,2,... M
g Hi PALEL M pin '
On simplification, p(0,0) becomes,
A -1
Mo Lo oM ,
p(0,0) = {1 + 21 (j) A 1p¢ T 21 (M+j) A 1Pz’(PM+1)]} (2.25)
j= i= j= i=

Equations (2.23), (2.24) together with equation (2.25) shows the steady state
probabilities of the models discussed in this paper.

2.5 Some Performance Measures

In this section some performance measures like mean number of customers in the
queue, in the system, in the service station and in the source, the idle probability are
derived both in the case of time dependent domain(transient case) and time independent
domain(stationary case) using statistical formulas.

2.5.1 Transient Case
1. Mean number of customers in the queue at time t

Ly(t) = i np(n, M;t) (2.26)

n=0

2. Mean number of customers in the system at time t
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Ly(t) = 3 np(0, m;1) + M 3 pln, M; 1

n=0 n=1

4. Mean number of customers in the source at time t

La(t) = 5SS (N = m)p(0.m: ) + 32 (L — n)p(n, M 1)

5. Idle Probability at time t

M=

I
_

(]]V) ‘jl pPi + il (MJL) 11]\_/[[1 pz’(pM—H)j}

]

p(0,0;t) = {1+

J

2.5.2 Stationary Case

1. Mean number of customers in the queue

L= mpln, M) = 3 () ﬁ pi(parsr)"p(0,0)

n=1

S
o

2. Mean number of customers in the system

Ly = %0 np(0,n) + il np(n, M)
= é n(Y) ﬁl pip(0,0) + nZ: n () ﬁl pi(pars1)"p(0,0)

3. Second moment of Mean number of customers in the system

Ly = ﬁj:o n?p(0,n) + zi:l n’p(n, M)
= %1 n? (M) :Hlmp(&@) + Xle n?(,%) [1 pi(par+1)"p(0,0)
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4. Mean number of customers in the service station

np(0,m) + M Y pln, M)

0 n=1

n(3) ﬁ[lmp(@, 0) + é(mn)ﬂ i(par1)"p(0,0) (2.34)

1=

I
M=

Ly

I
Mzi
:

3
Il
—
_

5. Mean number of customers in the source

L= 3 (N = np(0m) + 3 (L~ m)p(n, M)

= S W= () TTew0.0)
3 (=) (,) T o) '9(0.0) (2.3

6. Idle Probability

p<o,o>={ 3 () 1 §<M+]>le<pM+1>} (2.30

3  Waiting Time Analysis

Let W represents the time spent by an arriving customer(Test Customer) in the
queue and W(t) be its cuammulative distributive function. There are two cases (i) If the
Test Customer finds no one in the system, its waiting time is the service time in the
system. In this case W = 0. (ii) If the Test Customer finds the service station is full
then the waiting time in the queue W > 0. Using simple probabilistic arguments the
distribution of W is obtained as
(i) If W=o0,

W(0) = Pr{W =0}

W(0) = Pr{M — 1 (or) less number of customers in the service station}

W(0) = fg (%) 1:11 pip(0,0) (3.1)
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(ii) If W >0,

W(t) = Pr{0 < W < t}

W(t) = Sy pln— M, M) [ M Mgy, x%dw

Now,

(MNMYL_M - e—Mth
Ay = L X (M)

t —Mpyax
foe PME M piprx.

The cummulative distribution function for waiting time random variable W is

Now differentiating W (t) with respect to t we get,

W) = Sy pln - M, M){ - (M) i
+eM,th.iti1)}

n—M (MMM)i+1 e*]\/fﬂj\/jt'ti

= ZLMP(”—MM){DQO 5]

_ Z” M (Mppp)te”Meart -1
(z 1H!

3.1 Expected Mean Waiting Time

E(W) = [ tdW ()

!

- Z’LL:Mp(n — M, M){ ZZT‘L:_OM (M) fooo e~ Mupnrt i+l 4

_Zn w p(n— M, M) Zn:M (ﬂfu%') fo MMMt.tidt}

Now, [ e Muat gitlqp — (M(LH)HQ and [° _MMMt'tidt:—(M#Z)m
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Substituting above values in equation (3.2) we get,

(W) = S5y pln — M, M) ST 0™t o )

i=0 ! (Mpar)i+2

L n—M (M i il
- Zn:M p(n - M, M) Zi:l ((ifﬁ!) X (MMA;)Z'-H
L n—M
E(W) =3y pn— M, M) 335" 5

E(W) = Yo,y pln — M, M) D (3.4)

Mpng

Equation (3.4) shows the expected mean waiting time of a customer.

4 The Numerical Study

In this section, we presents some numerical illustrations to show the effect of the
parameters on the model, both transient case and steady state case in this section. By
taking particular values to the parameters, A\, p;, M, L and N, the probabilities and
performance measures are calculated and are presented in the following subsections.

4.1 Transient Case

For finding matrix exponential, Python provides sophisticated method powered
by the SciPy library. We use the coding in the Python, and we find the value of
et for various values of t and fixing the parameters N = 20,L = 9,M = 10,\ =
5 m(i=1,2,..10) =1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8, 1.9 . The probability vector p(t)
is obtained using p(t) = e4*, by taking the initial probability vector p(0) = [1,0,0,...0] .
The corresponding performance measures are calculated using the formulas in the
subsection 2.5.1. The transient probabilities of various values of ¢ are presented in
table 4.1 and 4.2 and the performance measures are presented in table 4.3. The first
row of table 4.1 and 4.2 show the idle probability.
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Table 4.1: The Transient State Probabilities

N=20, L=9, M=10, A=5, u;(i=1, 2, ... 10)=1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9

D(i,j;t)

t=0.1

t=0.2

t=0.3

t=0.4

t=0.5

P(o,0;t)
P(o,15t)
P(0,2;t)
P(o,3;t)
P(o,4;t)
P(o,5;t)
P(o,6;t)
P(o,7;t)
P(o,s;t)
P(o,9;t)
P(o,10;t)
P(1,105t)
P(2,10;t)
P(3,10;t)
P(a,105t)
P(5,105t)
P(6,10;t)
P(7,10;t)
P(s8,10;t)
P(9,10;t)

8.09636x 1005
1.01094x 1093
5.93189x 1003
2.17513%x 1002
5.59062x 1002
1.07076x 10~ 01
1.58584 %10~ 01
1.85996x10~01
1.75455x 1001
1.34318x10~01
8.30486x 1002
4.30139x 1092
1.86098x 1002
6.68068x 1003
1.96808x10~03
4.67930x10~94
8.75968 x 10~ 05
1.24321x10-95
1.25767x10~06
8.29812x10~98

3.18357x 1098
1.02241x10~06
1.50809x10793
1.36035x10~04
8.42640x 1004
3.81395x 1093
1.30976x 1002
3.49437x 1092
7.34125x10~92
1.21766x 1001
1.56954x10~01
1.71013x10-01
1.57556x10~01
1.22039x10~01
7.85983 %1002
4.13757x10-92
1.73560x 10702
5.58212x 1003
1.29510x 1093
2.02527x10794

1.30281x10~10
7.59276x10~09
1.96732x10~97
3.02637x1096
3.10994x 1095
2.27409% 1004
1.22879% 10703
5.01998 x 1003
1.56978x 1002
3.76847x10702
6.88885x 1092
1.08150x10~01
1.45992x 1001
1.68443x10~01
1.64180x10~01
1.32792x 1001
8.68268x1002
4.41475%x10792
1.64603x10~02
4.22747x10703

6.17838x 1012
4.86133x10—10
1.66146x10~98
3.30082x 1097
4.29673x10~96
3.91025x1095
2.58809x 1004
1.27747x10703
4.77536x10793
1.36227x10~92
2.96581 %1002
5.65055x 1002
9.41443x10~92
1.36146x10~01
1.68714x10~01
1.75835x10~01
1.50073x 1001
1.00920x 1001
5.05137x 1002
1.75120x 10702

1.24395x10~12
1.09355x10~10
4.14725%x10799
9.09015%x 1098
1.29935x10~06
1.29382x 10795
9.34783x 1095
5.03223x 1004
2.05358x 1093
6.41819x10793
1.54246x 10702
3.29169x 1092
6.21872x10792
1.03081x10~01
1.47866x10~01
1.80055x10~01
1.81191x10~01
1.44999x10~01
8.71322x1002
3.60646x1002

Total Probability

0.91695

1.00000

1.00000

0.999999

1.00000

Table 4.2: The Transient State Probabilities

N=20, L=9, M=10, A=5, u;(i=1, 2, ... 10)=1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9

P(i,git)

t=0.6

t=0.7

t=0.8

t=0.9

t=1

p(0,0;t
P(o,1;t)
P(o,2;t)
P(o,3;t)
P(0,4;t)
P(o,5;t)
P(o,6;t)
P(o,7;t)
P(o,8;t)
P(o,9;t)
P(0,10;t)
P(1,10;t)
P(2,10;t)
P(3,10;t)
P(4,10;t)
P(5,10;t)
P(6,10;t)
P(7,10;t)
P(8,10;t)
P(9,10;t)

4.69022x10~13
4.32189x10— 11
1.71702x10799
3.94149%10-98
5.90154x 1097
6.15940% 1006
4.67000x10~95
2.64322x1004
1.13732x10703
3.76345%x 1093
9.63558 1003
2.21170x 1002
4.52822x1092
8.18687x 1002
1.28837x10~ 01
1.73052x 1001
1.93100x10~01
1.72194 %1091
1.15661x10~91
5.30338x 1002

2.45094x10~13
2.32105%x 1011
9.48096 x 10— 10
2.23911x10798
3.45201x 1097
3.71361x 1006
2.90615x1095
1.70074x 1004
7.58365x 1004
2.60848x 1093
6.97065x 1093
1.67982x10~02
3.62633x 1092
6.93704x1002
1.15860x10~01
1.65614x10~01
1.97150x10~01
1.87908x10~01
1.34905x 10701
6.55897x 1002

1.58354x10~13
1.52749x 1011
6.35831x10~10
1.53108x 1008
2.40828 x10~97
2.64541 %1006
2.11592x1095
1.26714x10~04
5.79059% 1004
2.04516x10~93
5.62609x 1003
1.40055x 10702
3.13041x10792
6.21099%x 1002
1.07743%x10~91
1.60150x 1001
1.98422x 1001
1.96906x10~01
1.47036x10~01
7.39230% 1002

1.18682x10~13
1.15948x 1011
4.88973x10~10
1.19330x10-98
1.90308 %1097
2.12059% 1006
1.72163x10~95
1.04727x10704
4.86578x 1004
1.74923x10~03
4.90528 %1093
1.24726x 1002
2.85085x 1002
5.78887x 1002
1.02833x10~ 01
1.56587x10~01
1.98785x10~01
2.02086x 1091
1.54428x10~01
7.91476x 1002

9.86076x10 14
9.71692x 1012
4.13393x10~10
1.01796x 1008
1.63851x10~97
1.84325x10~06
1.51132x10~95
9.28860x 1095
4.36259x 1004
1.58645x10~03
4.50402x10793
1.16075x10~02
2.69065x 1092
5.54274x 10792
9.99070x 1092
1.54380x10~01
1.98869x10~01
2.05087x 1001
1.58853x10701
8.23251x 1092

Total Probability

0.99999

0.99999

1.00000

1.00000

0.99999
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Table 4.3: The system performance measures

N=20,L=9,M=10,A=5,u;(i=1,2,...10)=1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9
t 0.1 0.2 0.3 0.4 0.5
Li(t) 0.11119 | 1.52891 | 3.22587 | 4.37586 5.08205
Lo(t) 6.64479 | 5.12772 | 4.42328 | 4.84396 5.31464
L3(t) 7.24202 | 9.54899 | 9.90960 | 9.97174 9.98752
La(t) | 12.49300 | 8.17015 | 5.92443 | 4.67239 3.93952
E(W(t)) | 0.02224 | 0.30578 | 0.64517 | 0.87517 1.01641
t 0.6 0.7 0.8 0.9 1.0
Ly (t) 5.50545 | 5.75675 | 5.90513 | 5.99249 6.04380
La(t) 5.64694 | 5.85739 | 5.98546 | 6.06203 6.10736
L3(t) 9.99295 | 9.99523 | 9.99633 | 9.99690 9.99719
La(t) 3.50683 | 3.25158 | 3.10133 | 3.01301 2.96114
E(W()) | 1.10109 | 1.15135 | 1.18103 | 1.19850 1.20876

In the figure 4.4 for varying values of ¢, the mean length Ly(t), Lo(t), L3(t), L4(t) are
drawn as graphs. In the figure 4.5, the graph of expected waiting time using Little’s
Law are drawn.

R — Li(t)
15 - Lg(t)
Ls(t)
— Ly(t)
10 |
=

02 04 06 08 1
¢

Figure: 4.4 Mean number of customers
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1.5

0.5 |

02 04 06 08 1
¢

Figure: 4.5 Mean waiting time

4.2 Steady State Case

we calculated the stationary probabilities and the performance measures obtained
in subsection 2.5.2. For the analysis, we vary the arrival rate A from 1 to 10. The
steady state probabilites are presented in tables 4.6 and 4.7. The corresponding
system performance measures are presented in tables 4.8. In the figure 4.9 the system
performance measures Lq, Lo, L3, Ly and L5 are shown as graphs and the mean waiting
time is shown in graph 4.10
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Table 4.6: The Steady State Probabilities

N=20, L=9, M=10, p;(i=1, 2, ...

10)=1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9

Pi

A=1

A=2

A=3

A=4

A=5

P(0,0)
P(o,1)
P(o,2)
P(o,3)
P(0,4)
P(0,5)
P(o,6)
P(o,7)
P(o,8)
P(0,9)
P(o,10)
P(1,10)
P2,10)
P(3,10)
P(4,10)
P(5,10)
P(6,10)
P(7,10)
P(s,10)
P(9,10)

1.47986x10~95
2.95972x 1004
2.55612x1003
1.27806x10~02
4.17827x10702
9.55033 %1002
1.59172x10~01
1.98965x10~01
1.90187x10~01
1.40880x 1001
8.15618 x 1002
4.29273x10702
2.03340x 1002
8.56168x 1003
3.15430x10~03
9.96095x 1004
2.62130x1004
5.51853x 1005
8.71347x10~96
9.17208x 1097

2.48021 %1098
9.92082x 1097
1.71360x 10795
1.71360x 1004
1.12043x10793
5.12196x 1093
1.70732x10~02
4.26830x 1092
8.15998 x 1092
1.20889x10~01
1.39976x10~01
1.47343x10~01
1.39589% 1001
1.17548x10~01
8.66145%x 1002
5.47039x 1092
2.87915%x 1002
1.21227x 10702
3.82824x10793
8.05945x 1004

1.57922x10~10
9.47534x10799
2.45497x10~97
3.68246x 1096
3.61164x10795
2.47656x 1004
1.23828 %1003
4.64354x10793
1.33160x 10702
2.95912x10~02
5.13953 %1002
8.11504x 10702
1.15319x10~01
1.45666x10~01
1.60999x10~01
1.52526x 1001
1.20415x10~01
7.60516 %1002
3.60245%x10702
1.13761x10~02

2.43566x 1012
1.94853x10~10
6.73128x 1099
1.34626x10~07
1.76049x 1006
1.60959x10~05
1.07306x10~04
5.36530x 1004
2.05144x10793
6.07833%x 1003
1.40761x10~02
2.96340x 1092
5.61486x 1002
9.45660% 1002
1.39360x10~01
1.76034x10~01
1.85299x10~01
1.56041x 1091
9.85525x 1002
4.14958x 1092

7.35657x10~14
7.35657x 10712
3.17670x 1010
7.94175%x10709
1.29817x10~97
1.48362x10~06
1.23635x10~0%
7.72721x10795
3.69315x10~04
1.36783x10703
3.95952x 1093
1.04198x 1002
2.46785%x 1092
5.19546 x 1092
9.57059x 1002
1.51115x10~01
1.98835x10~01
2.09300x 1001
1.65237x10~01
8.69668x1002

Total Probability

0.999985

1

1

1

1

Table 4.7: The Steady State Probabilities

N=20, L=9, M=10, p;(i=1, 2, ...

10)=1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,

Pi

A=6

A=T

A=8

A=9

A=10

P(0,0)
P(o,1)
P(0,2)
P(0,3)
P(0,4)
P(o,5)
P(0,6)
P(o,7)
P(o,8)
P(0,9)
P(o0,10)
P(1,10)
P2,10)
P(3,10)
P(4,10)
P(5,10)
P(6,10)
P(7,10)
P(s,10)
P(9,10)

3.68915x10~15
4.42698x 1013
2.29398x 1011
6.88194x10~10
1.34992x 1008
1.85132x10707
1.85132x10~06
1.38849x10~95
7.96339x 1005
3.53929% 1004
1.22944x10~03
3.88243x10793
1.10343x10~92
2.78761x 1002
6.16208 x 1002
1.16755x10~ 01
1.84350x10~01
2.32864 1091
2.20608x 1091
1.39331x10~91

2.72596x 1016
3.81634x10~14
2.30715x 1012
8.07503x 1011
1.84794x 10799
2.95670x 1098
3.44949x 1097
3.01830x 1006
2.01960x 1095
1.04720x 10704
4.24391x10—04
1.56355x10~03
5.18439x10~93
1.52803x10~02
3.94071x 1002
8.71105%x 10792
1.60467x10~01
2.36477x10~01
2.61370x 1091
1.92588x 1001

2.72682x10~17
4.36292x10~15
3.01438x1013
1.20575x10~11
3.15351x10~10
5.76641x10~99
7.68855% 1008
7.68855%x10~07
5.87948x 1006
3.48414x1095
1.61370x 1004
6.79455x1004
2.57477x10703
8.67293x1093
2.55623 %1002
6.45785x10~92
1.35955x 1001
2.28976x 1001
2.89233x10~91
2.43565x 1001

3.47436x10~18
6.25384x10~16
4.86094x 1014
2.18742x10~12
6.43607x 1011
1.32399x 10799
1.98599x10~08
2.23424x10797
1.92210x 1006
1.28140x10~05
6.67677x10-05
3.16268x1004
1.34830x 10703
5.10935% 1093
1.69415x10~02
4.81496x10~02
1.14039x10~01
2.16073x 1091
3.07051x10~01
2.90891 %1001

5.39147x 1019
1.07829x 1016
9.31254x 1015
4.65627x10~13
1.52224x 10~ 11
3.47941x10~10
5.79902x 1099
7.24877x 10708
6.92897x 1097
5.13257x 1096
2.97149x 1095
1.56394x 1004
7.40815x10~04
3.11922x 1093
1.14919x10~02
3.62901x10792
9.55002x 1092
2.01053x 1001
3.17452x10~91
3.34160x 1091

Total Probability

1

1

1

1

1
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Table 4.8: The system performance measures

N=20,L=9M=10,p;(i=1,2,..10) = 1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9
A 1 2 3 4 5
Ly 0.12892 1.69463 3.80085 5.22921 6.11674
Lo 6.77014 5.26705 4.72898 5.44558 6.17223
L3 50.69000 | 38.3235 28.1986 33.7831 41.4538
Ly 7.93037 | 20.5187 | 38.9366 52.5085 61.2229
Ls 13.12460 | 9.48792 5.83877 3.93266 2.92708
E(W) 0.01509 0.12768 0.25009 0.32739 0.37447
A 6 7 8 9 10
L 6.69482 7.09334 7.3815 7.59802 7.76585
Lo 6.71105 7.09871 7.38348 7.59882 7.7662
L3 47.8128 52.7119 56.4858 59.4407 61.7993
Ly 66.9645 70.9388 | 73.81700 | 75.98100 77.6588
Ly 2.31848 1.91118 1.62020 1.40268 1.23446
E(W) 0.40497 0.42596 0.44113 0.45253 0.46136
N Ll
80 «
- L2
— Ly
Ly
60 |
- L5
=40
20 |
0 : - 1
2 4 6 8 10

Figure: 4.9 Mean number of customers
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0.8 |

—~ 0.6

0.2 |

2 4 6 8 10
A

Figure: 4.10 Mean waiting time

5 Control Chart Analysis

In this section, the statistical process control is carried out using control chart
analysis. Several types of control charts are available in the literature, but whatever
may be the type, all have some few common characters. They contains the upper and
lower control limits within which all observations should lie, if the process is in control.
There is a central line( C'L ), which is usually considered to be the target value for the
process, they generally show the numbers along the vertical axis to define the values of
the control limits and if the observations are beyond these points, the charts may be
tailored to suit the requirements of the process. A typical control chart has all points lies
nearly within the upper control limit(UCL) and the lower control limit( LCL). The
control chart for number of customers in the system are obtained using the following
control limits:

e CL=1L, (5.1)
e UCL=Ly+3VV (5.2)
e LCL=1L,—-3VV (5.3)

where, V = L3 — L3

The UCL and LCL should be symmetric around C'L. But in some cases, the
LC'L becomes negative. In this case, the LC'L can be rounded to zero. The numerical
results are obtained adhere with the stability condition. Our computational experience
shows that the number of customers in all the samples are distributed between UCL
and LCL, in particular very nearest to C'L. In this study we never experience that
the situation is out of control.
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Table 5.1: The Control Chart Table( ;1 =1.9)

A LCL CL UCL
1 0.15978 6.77014 | 13.38050
2 | -4.49180~0 | 5.26705 | 15.02590
3 | -2.51796~0 | 4.72898 | 11.97592
4 | -0.65022~0 | 5.44558 | 11.54138
5 0.67529 6.17223 | 11.66917
6 1.71390 6.71105 | 11.70820
7 2.52903 7.09871 | 11.66839
8 3.17275 7.38348 | 11.59421
9 3.68887 7.59882 | 11.50877
10 4.10984 7.76620 | 11.42256
14 —CL
12 cL
10 uCL
E cLv
o 8
5
& 6
c
o
[
i}
2
0

1 2 3 4 5 6 7 8 9 10
Lambda values

Figure 5.2: Control chart for number of customers(p=1.9)
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Table 5.3: The Control Chart Table( ;1 =2.0)

A LCL CL UCL
1 0.34063 6.8039 | 13.26717
2 | -4.49873~0 | 5.43910 | 15.37693
3 | -2.88420~0 | 4.67298 | 12.23016
4 1-0.96340~0 | 5.28363 | 11.53066
) 0.37418 6.00790 | 11.64162
6 1.42823 6.56775 | 11.70727
7 2.26583 6.97691 | 11.68799
8 2.93291 7.27946 | 11.62601
9 3.47014 7.50892 | 11.54771
10 3.90959 7.68750 | 11.46541
14
12
g 10
=
S 8
[
2
0
1 2 3 4 5 6 7 8 9

Lambda Values

10

—— O]

cL

UcCL

CLVv

Figure 5.4: Control chart for number of customers( u=2.0)
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A numerical model is provided to analyze the performance of the queue using control
chart analysis with reference to difference arrival rates, production times(service times),
and waiting space size. The corresponding graphs are drawn and are given in Figures
5.2 and 5.4. The values of CL, UCL and LCL are obtained from the formulas in
the equations (5.1),(5.2) and (5.3). The values are also tabulated and are shown in the
tables 5.1 and 5.3. The UCL and LCL should be symmetric around C'L. But in
some cases, the LC'L becomes negative. In this case, the LC'L can be rounded to zero.
Our computational experience shows that the number of customers in all the samples is
distributed between UCL and LCL, in particular very nearest to C'L. In this study
we never experience that the situation is out of control.

6 Conclusion

In this paper, control limits have been obtained for number of customers in the system
of the given queueing model. Numerical illustrations are provided. Our computational
experience shows that, the process control shows to be under control.
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