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Abstract— Sleep apnea is a common and potentially serious 
sleep disorder marked by repeated interruptions in breathing 
during sleep, which can lead to severe health consequences if not 
properly managed. Traditional diagnostic methods, often 
reliant on manual analysis of polysomnographic data, can be 
cumbersome and inaccessible. This study presents a 
comprehensive analysis of a novel system for the automatic 
classification of sleep apnea events using a wavelet-enhanced 
deep learning approach. The proposed method integrates the 
Discrete Wavelet Transform (DWT) for robust feature 
extraction, capturing both time and frequency domain 
characteristics of respiratory signals. These features are 
subsequently employed in a Convolutional Neural Network 
(CNN) to precisely classify three distinct types of sleep apnea: 
obstructive sleep apnea (OSA), central sleep apnea (CSA), and 
mixed sleep apnea (MSA). Utilizing a dataset comprising 1146 
annotated apneic events, the system demonstrates high accuracy 
and robustness, achieving classification accuracies of 92.8% for 
OSA, 92.6% for CSA, and 90.0% for MSA. Our experimental 
results on the Physionet MIT-BIH polysomnography database 
(xx overnight recordings) revealed that proposed system 
achieved accuracies of % for OSA, % for CSA, and % for MSA. 
This approach underscores the potential of combining wavelet 
transforms with deep learning to offer a reliable, efficient, and 
non-intrusive solution for sleep apnea diagnosis, paving the way 
for improved patient outcomes and facilitating large-scale sleep 
studies. 

Keywords—apnea, deep learning, wavelet transform, support 
vector machine 

I. INTRODUCTION  

Sleep apnea is a widespread but potentially serious sleep 
disorder that involves repeated disruptions in breathing during 
sleep [1]. These disruptions, known as apneas, can result in 
various health problems, including cardiovascular diseases, 
daytime fatigue, and cognitive impairment. Sleep apnea is 
typically divided into three categories: obstructive sleep apnea 
(OSA), central sleep apnea (CSA), and mixed sleep apnea 
(MSA), which is a combination of the other two. OSA, the 
most common form, occurs due to a physical obstruction of 
the upper airway, despite the body's efforts to breathe [2]-[5]. 
Conversely, CSA arises when the brain fails to transmit the 
necessary signals to the muscles responsible for breathing, 
causing a lack of respiratory effort. MSA exhibits 
characteristics of both OSA and CSA. 

Traditional methods for diagnosing sleep apnea primarily 
rely on overnight polysomnography (PSG) conducted in 
specialized sleep labs [5]. While PSG is highly accurate, it is 
also expensive, time-consuming, and inconvenient for many 
patients, often leading to underdiagnosis. The need for a non-
intrusive, efficient, and accessible diagnostic tool has driven 

the development of innovative methods for sleep apnea 
detection and classification. Recent advancements in 
technology have introduced wearable devices and home-
based monitoring systems, which utilize sophisticated 
algorithms to analyze physiological signals and detect apnea 
events in real time [6]-[7]. 

The classification of apneas is critical for accurate 
diagnosis and effective treatment. Each type of apnea has 
distinct characteristics and underlying causes, necessitating 
different therapeutic approaches. Accurate classification not 
only aids in tailoring treatments but also reduces the need for 
repeated diagnostic tests and consultations, optimizing 
resource utilization and reducing healthcare costs [8]-[9]. 

In this study, we present a comprehensive analysis of an 
advanced system that leverages the Discrete Wavelet 
Transform (DWT) for feature extraction, combined with a 
Convolutional Neural Network (CNN) for the classification of 
sleep apnea events. The DWT is particularly effective in 
capturing both time and frequency domain characteristics of 
respiratory signals, providing a rich set of features for the 
CNN to process. This approach aims to enhance the accuracy 
and reliability of sleep apnea classification, offering a 
significant improvement over traditional methods and 
facilitating large-scale sleep studies. 

The main contribution of the work is combining wavelet 
transforms with deep learning, the proposed system offers a 
non-intrusive, efficient, and scalable solution for sleep apnea 
diagnosis. This method has the potential to improve patient 
outcomes and facilitate large-scale sleep studies, addressing 
the limitations of traditional diagnostic methods. 

The structure of the paper is as follows: Section II, 
Literature Review, provides a comprehensive overview of 
previous research in sleep apnea classification, with a focus 
on the methodologies and technologies used, such as machine 
learning and signal processing techniques. Section III, 
Materials and Methods, describes the dataset utilized in this 
study, the signal acquisition process, and the methodology, 
including the application of the Discrete Wavelet Transform 
(DWT) for feature extraction and the design of the 
Convolutional Neural Network (CNN) for classification. 
Section IV, Results, presents the performance metrics of the 
proposed system, such as accuracy, sensitivity, and 
specificity, assessed on both seen and unseen data. Section V, 
Discussion, interprets the results, comparing the proposed 
approach with existing methods and highlighting the 
advantages of integrating wavelet transform with deep 
learning. Finally, Section VI, Conclusion, summarizes the 
findings, discusses the implications for future research, and 
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suggests potential areas for further development in sleep 
apnea diagnosis. 

II. PREVIOUS STUDIES 

The classification of sleep apnea has advanced 
significantly due to technological progress and a deeper 
understanding of the condition. This literature review 
compiles insights from recent research, concentrating on the 
methodologies and technologies employed for classifying 
OSA, CSA, and MSA. The study referenced in [6] introduces 
a technique for detecting and classifying Sleep Apnea-
Hypopnea Syndrome (SAHS) using single-channel EEG, 
oronasal flow, and abdominal displacement signals. A Long-
Short Term Memory-Convolutional Neural Network (LSTM-
CNN) model was utilized to classify events into four 
categories: normal, hypopnea, OSAS, and CSAS + MSAS, 
achieving a classification accuracy of 83.94% with a 
significantly reduced false-positive rate of 5.34%. The study 
in [7] explored the use of thoracic (THO) and abdominal 
(ABD) movement signals, captured by piezoelectric 
wearables, to detect sleep apnea events, including OSA and 
CSA. An adaptive nonharmonic model was developed to 
extract features from these signals, which were then classified 
using a support vector machine, resulting in an accuracy of 
81.8%. The authors in [8] proposed an automatic classification 
method for sleep apnea events using EEG signal analysis. 
EEG signals were decomposed into sub-bands, and features 
such as sample entropy and variance were extracted. Neighbor 
Composition Analysis (NCA) was employed for feature 
selection, and Random Forest, K-Nearest Neighbor, and 
Support Vector Machine classifiers were used for 
classification, achieving an average accuracy of 88.99% 
across OSA, CSA, and normal breathing events, highlighting 
its potential for automated sleep apnea diagnosis without the 
need for expert intervention. The study in [9] describes a 
method for classifying sleep apnea on a minute-by-minute 
basis using respiration signals from the abdomen, chest, and 
nasal passages. Features were extracted using wavelet 
transforms, and dimensionality was reduced with PCA before 
classifying the data from eight recordings using three 
ensemble classifiers: AdaBoost, Random Forest, and Random 
Subspace. The highest accuracy, 98.68%, was obtained using 
nasal signals with the Random Forest classifier, indicating that 
this combination is the most effective for detecting sleep 
apnea. 

These innovations hold promise for improving diagnostic 
accuracy, patient outcomes, and healthcare efficiency. 
Continued research and development in this field are essential 
for addressing the complexities of sleep apnea and providing 
effective, personalized care for patients. 

This paper aims to provide an overview of sleep apnea, the 
importance of early and accurate detection, and the emerging 
technologies that are revolutionizing the way this condition is 
diagnosed. Enhancing detection methods can lead to better 
patient outcomes, lower healthcare costs, and ultimately 
improve the quality of life for individuals affected by sleep 
apnea. 

III. MATERIALS AND METHODS 

A. Subjects and Dataset 

This study included 24 subjects diagnosed with sleep 
apnea, selected based on common symptoms such as daytime 
sleepiness, loud snoring, and frequent nighttime awakenings. 

In this study, sleep apnea was classified into three distinct 
types: OSA, CSA, and MSA. Many of the participants also 
had other health conditions, such as hypertension, heart 
failure, and stroke, which are commonly linked with sleep 
apnea. 

The severity of sleep apnea in the subjects was evaluated 
using the apnea-hypopnea index (AHI), a measure that 
indicates the number of apnea and hypopnea events per hour 
of sleep. The AHI was divided into four categories to represent 
the severity levels: less than 5 (normal), between 5 and 15 
(mild apnea), between 15 and 30 (moderate apnea), and 
greater than 30 (severe apnea). In total, the study analyzed 125 
events of OSA, 103 events of CSA, and 78 events of MSA. 

Table I provides detailed demographic information about 
the subjects, including the distribution across different AHI 
ranges, as well as corresponding sleep duration, age, body 
mass index (BMI), and average AHI. It is observed that as the 
severity of apnea increases (as indicated by higher AHI 
values), the average age and BMI of the subjects tend to 
increase as well. The highest AHI group (AHI > 15) shows the 
most severe cases with the longest average AHI and the 
highest BMI, indicating a correlation between obesity and 
severe sleep apnea. 

TABLE I.  DEMOGRAPHIC DETAILS OF SUBJECTS  

AHI Range 
No. of 
Subject 

Sleep time 
(hours) 

Age 
(years) 

BMI 
(kg/m²) 

Average 
AHI 

Normal (< 5) 5 6.2 ± 0.5 45 ± 11 26.3 ± 5.7 2.5 ± 1.6 

Mild (5 - 15) 10 5.5 ± 0.8 53 ± 14 28.3 ± 6.7 10.1 ± 3.2 

Severe (> 15) 9 5.1 ± 1.2 57 ± 17 34.3 ± 7.9 37.6 ± 14.5 

 

B. Signal Acquisition and Processing  

The airflow signals were obtained using a thermistor-
based sensor, specifically the 5700T model with a 5700B 
connector from Salter Labs Thermisense™. This sensor 
generated a small voltage signal with a peak-to-peak range of 
1 mV. To ensure accurate data capture, the signal was divided 
into two separate channels. One channel was connected to a 
polysomnography (PSG) system, specifically the Alice LE 
model (part no. 1002287, Philips Respironics), which is 
commonly used in clinical settings for sleep studies. The other 
channel was routed to a custom-built PC-based data 
acquisition system designed for this study. 

In the PC-based system, the respiratory signals first 
underwent a pre-amplification process to enhance the signal 
strength. Following this, the signals were passed through a 
series of filters to remove noise and unwanted frequencies. A 
50 Hz notch filter was used to eliminate electrical noise 
typically present in the environment, particularly from power 
lines. Additionally, a 6th order active band-pass filter was 
applied, designed with a passband ranging from 0.01 to 15 Hz, 
to focus on the frequency components most relevant to 
respiratory signals. After filtering, the signals were further 
amplified to ensure they fit within the sensor's output range of 
±5V, making them suitable for subsequent analysis and 
processing. 

Respiratory effort signals were recorded using respiratory 
inductance plethysmography (RIP) belts placed around the 
chest and abdomen. These signals capture the effort involved 
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in breathing, which is crucial for differentiating between the 
types of sleep apnea. Signal processing involved noise 
reduction, signal normalization, and segmentation to isolate 
individual breaths or apnea events for further analysis. A 2nd 
order Butterworth filter was employed to filter the airflow and 
movement signals. Additionally, an artifact removal algorithm 
was applied, as described in [10]. Fig. 1 & 2 show the airflow 
signal during normal breathing and during apneic event. 

C. Feature Extraction  

The Discrete Wavelet Transform (DWT) [11] is a 
powerful tool for analyzing non-stationary signals such as 
airflow and respiratory effort signals which are used in sleep 
apnea classification. By decomposing the signals into 
different frequency components, DWT provides valuable 
features that can enhance the accuracy of apnea detection and 
classification. DWT decomposes a signal into approximation 
and detail coefficients at various levels.  

The process begins by applying both low-pass and high-
pass filters to the signal to separate it into different frequency 
components. The low-pass filter extracts the approximate 
coefficients, which represent the signal's low-frequency 
elements. On the other hand, the high-pass filter isolates the 
detail coefficients, capturing the high-frequency elements of 
the signal. This dual filtering approach allows for a 
comprehensive analysis of both the broader trends and the 
finer details within the signal. The following features are 
extracted from these approximation and detail coefficients. 
Fig. 3. Shows the DWT of the respiration signal during apnea 
event, up to level 3, with db4 as mother wavelet.  Fig. 4 shows 
that Shanon entropy value decreases when the respiration and 
respiratory effort signal matches for the CSA event. 

 Energy of detail coefficients (Ed) 
 Energy of approximation coefficients (Ea) 
 Shanon entropy (𝑆ா)  
 Standard deviation of wavelet coefficients 
 Statistical moments of the coefficients(mean, 

variance, skewness, kurtosis) 
A brief description of each feature calculated on respiration 
signals: 
 
1. Energy of Detail Coefficients (Ed): In wavelet transform, 
detail coefficients represent high-frequency components of 
the signal. Ed refers to the energy content within these high-
frequency components after decomposition using wavelet 
transform. It quantifies the contribution of high-frequency 
details to the overall signal. 
 
2. Energy of Approximation Coefficients (Ea): 
Approximation coefficients in wavelet transform capture the 
low-frequency components of the signal. Ea measures the 
energy content within these low-frequency components after 
decomposition. It provides insight into the dominant low-
frequency characteristics of the signal. 
 
3. Shannon Entropy (SE): It is a measure of signal complexity 
and uncertainty. In the context of wavelet analysis, it 
quantifies the randomness or unpredictability of the signal 
based on the distribution of wavelet coefficients. Higher 
entropy values indicate greater signal complexity, whereas 
lower values indicate more predictable patterns. 
 

4. Standard Deviation of Wavelet Coefficients: After wavelet 
decomposition, the standard deviation of wavelet coefficients 
provides a measure of the variability or spread of coefficients 
across different scales and levels. It indicates how dispersed 
the wavelet coefficients are from their average value, 
reflecting the signal's amplitude variations across 
frequencies. 
 
5. Statistical Moments of the Coefficients (mean, variance, 
skewness, kurtosis): These statistical moments describe 
different aspects of the distribution of wavelet coefficients: 
     - Mean: Average value of the coefficients, indicating the 
central tendency of the signal. 
     - Variance: Measure of the spread or dispersion of the 
coefficients around the mean. 
     - Skewness: Measure of asymmetry in the distribution of 
coefficients. Positive skewness indicates a tail towards higher 
values, negative skewness towards lower values. 
     - Kurtosis: Measure of the "tailedness" of the distribution. 
Higher kurtosis indicates more extreme outliers compared to 
a normal distribution. 
 
These features extracted from wavelet-transformed 
respiration signals provide comprehensive insights into 
different aspects of the signal's characteristics, enabling 
effective analysis and classification in applications such as 
sleep apnea detection and monitoring.  
Figure 3 demonstrates the application of the Discrete Wavelet 
Transform (DWT) on a respiration signal captured during an 
apnea event. The DWT breaks down the signal into multiple 
levels of approximation and detail coefficients, allowing for 
the analysis of both low-frequency and high-frequency 
components. In this figure, the signal is decomposed up to the 
third level using the Daubechies wavelet (db4), which is 
particularly effective for analyzing non-stationary signals 
such as respiration. The approximate coefficients reflect the 
overall trend of the signal (low-frequency components), 
while the detail coefficients reveal finer variations and details 
(high-frequency components). This decomposition is 
essential for extracting features that can be used to accurately 
classify different types of sleep apnea. 
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Fig. 3: Discrete Wavelet Transform (DWT) of the Respiration Signal During 
an Apnea Event (Up to Level 4 with db4 as Mother Wavelet). 

Figure 4 shows the Shannon entropy values calculated from 
the approximation coefficients obtained through the DWT of 
the respiration and respiratory effort signals. Shannon entropy 
is a measure of the complexity and randomness within the 
signal. In the context of sleep apnea classification, lower 
entropy values often indicate a match between respiration and 
respiratory effort signals, which is characteristic of central 
sleep apnea (CSA) events. This figure demonstrates how 
entropy values can vary depending on the type of apnea event, 
providing an essential feature for distinguishing between 
different types of apneas in the classification model. 
 
 

 
Fig. 4. Shanon entropy values for approximation coefficients. 

D. Classification Model  

In this study, a Convolutional Neural Network (CNN) was 
employed for the automatic classification of sleep apnea 
events, with a focus on differentiating between obstructive 
OSA, CSA, and MSA. The CNN model is particularly suited 
for this task because it can automatically learn and identify 
complex patterns from the input data, making it highly 
effective for processing features extracted using the Discrete 
Wavelet Transform (DWT). The CNN architecture designed 
for this study includes several key layers, each playing an 
essential role in the classification process. Figure 5 provides a 
block diagram of the proposed CNN model, visually depicting 
the architecture and illustrating the data flow through the 
network's various layers. 

Fig. 5. Block diagram of the proposed CNN model for identifying apnea 
types. 

Input Layer: The diagram starts with the input layer, which 
accepts the pre-processed and normalized features derived 
from the DWT. These features are crucial for capturing the 
time-frequency characteristics of the respiratory signals. 

Convolutional Layers: Following the input layer, the diagram 
shows multiple convolutional layers, each responsible for 
extracting different levels of features from the input data. 
These layers are depicted as blocks that apply various filters 
to the input, resulting in feature maps that highlight important 
signal patterns. 

Pooling Layers: The pooling layers are shown next, reducing 
the size of the feature maps generated by the convolutional 
layers. This step is crucial for simplifying the model and 
retaining only the most significant features. 

Fully Connected Layers: Following the pooling process, the 
feature maps are flattened and fed into fully connected layers. 
These layers, represented as dense blocks, handle the final 
decision-making by combining the extracted features to 
generate accurate predictions. 

Output Layer: The final block in the diagram represents the 
output layer, where the model assigns probabilities to each 
apnea type (OSA, CSA, MSA) using a sigmoid activation 
function. The highest probability determines the classified 
apnea type. 

Model Training and Validation: The CNN was trained on a 
comprehensive dataset consisting of 306 annotated apneic 
events. During the training process, the network's parameters 
were optimized to reduce classification errors, thereby 
enhancing the model's accuracy and robustness. The model's 
performance was assessed on both seen and unseen data to 
ensure its reliability 

IV. RESULTS 

The performance of the proposed convolutional neural 
network (CNN) in classifying sleep apnea events was 
assessed using a comprehensive dataset from 24 subjects. 
These subjects presented with varying apnea-hypopnea index 
(AHI) values and comorbidities, including hypertension, 
heart failure, and stroke. The dataset comprised 125 
obstructive sleep apnea (OSA) events, 103 central sleep 
apnea (CSA) events, and 78 mixed sleep apnea syndrome 
(MSA) events. 

1) Classifier Performance 
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The classifier's performance was assessed on both seen and 
unseen data. Table II presents the sensitivity (SE), specificity 
(SP), precision (PR), and accuracy (AC) of the model for each 
type of apnea event. 

TABLE II.  CLASSIFIER PERFORMANCE 

Class Sub. No. Dataset 
Performance (in %) 

SE SP PR AC 

OSA 
01 Seen 96.4 91.7 92.1 94.1 

03 Unseen 95.1 90.4 91 92.8 

CSA 
02 Seen 92.8 94.2 93.1 93.6 

06 Unseen 91.8 93.3 92.5 92.6 

MSA 
04 Seen 92.1 91.4 82 91.6 

08 Unseen 90.9 88.5 81.3 90.0 

 

2) Seen Data Analysis 
When evaluating the model's performance on the data it 

had previously encountered (seen data), the classifier showed 
strong effectiveness across different types of sleep apnea. For 
OSA, the model achieved a sensitivity of 96.4%, indicating 
its ability to correctly identify positive cases, while its 
specificity was 91.7%, reflecting its accuracy in identifying 
negative cases. The precision, which measures the reliability 
of positive predictions, stood at 92.1%, and the overall 
accuracy of the model for OSA was 94.1%. Similarly, for 
CSA, the classifier demonstrated a sensitivity of 92.8%, a 
specificity of 94.2%, a precision of 93.1%, and an accuracy 
of 93.6%. In the case of MSA, the model showed a sensitivity 
of 92.1%, a specificity of 91.4%, a precision of 82.0%, and 
an overall accuracy of 91.6%. 

3) Unseen Data Analysis 
To further validate the robustness of the model, its 
performance was also tested on data that it had not previously 
encountered (unseen data). The results confirmed that the 
classifier maintained high levels of accuracy. For OSA, the 
model achieved a sensitivity of 95.1%, ensuring it could 
reliably detect OSA cases, and a specificity of 90.4%, 
indicating its effectiveness in ruling out non-OSA cases. The 
precision for OSA was 91.0%, and the overall accuracy was 
92.8%. For CSA, the model demonstrated consistent 
performance with a sensitivity of 91.8%, a specificity of 
93.3%, a precision of 92.5%, and an accuracy of 92.6%. 
Regarding MSA, the classifier achieved a sensitivity of 
90.9%, a specificity of 88.5%, a precision of 81.3%, and an 
accuracy of 90.0%. 
These results across both seen and unseen datasets underscore 
the model's robustness and its ability to generalize effectively 
to new data. 

V. DISCUSSION 

This study presents an innovative approach to classifying 
sleep apnea events by combining the Discrete Wavelet 
Transform (DWT) with a Convolutional Neural Network 
(CNN). This method effectively captures the time-frequency 
characteristics of respiratory signals and applies deep 
learning techniques to accurately classify OSA, CSA, and 

MSA. The findings of this research demonstrate notable 
improvements over existing methods discussed in the 
literature. 
Compared to previous studies, this work shows significant 
advancements in the automatic classification of sleep apnea 
by integrating DWT with CNN. For instance, the study 
referenced in [6] integrates sleep staging with feature 
extraction, focusing on reducing false positives during 
wakefulness by selecting features that distinguish between 
sleep stages and apnea events. Additionally, the use of a 
Long-Short Term Memory-Convolutional Neural Network 
(LSTM-CNN) model for classification highlights the 
innovative nature of that research. Another study, referenced 
in [7], explored the use of piezoelectric wearables to detect 
sleep apnea events, particularly analyzing thoracic (THO) 
and abdominal (ABD) movement signals. An adaptive 
nonharmonic model was employed to extract features related 
to sleep apnea events, which were then classified using a 
support vector machine (SVM) into categories of normal and 
hypopnea, OSA, and CSA. The study in [8] focused on EEG 
signals to extract features such as sample entropy and 
variance related to sleep apnea events, using Neighbor 
Composition Analysis (NCA) for feature selection to identify 
the most relevant features for classification. Lastly, the study 
in [9] concentrated on respiration signals from the abdomen, 
chest, and nasal passages, exclusively focusing on the 
respiratory aspect. Wavelet transforms were used for feature 
extraction, and Principal Component Analysis (PCA) was 
applied for dimensionality reduction, optimizing the feature 
set for classification. 
The current study’s methodology presents several key 
advantages over previous works. By utilizing Discrete 
Wavelet Transform (DWT), the study captures a wide range 
of signal characteristics, such as energy coefficients, Shannon 
entropy, and statistical moments, leading to a more 
informative feature set for classification. The integration of a 
Convolutional Neural Network (CNN) further enhances the 
model's ability to handle complex data, automatically 
learning and refining important features, which results in 
improved classification accuracy. The model's robustness is 
validated using a comprehensive dataset of 306 apneic 
events, ensuring its generalizability across various types of 
sleep apnea. Additionally, while the current implementation 
is offline, the methodology is highly scalable and has the 
potential to be adapted for real-time processing, making it 
suitable for integration into wearable devices and large-scale 
sleep studies. 

VI. CONCLUSION  

This study introduces a novel and comprehensive method 
for classifying sleep apnea by combining the Discrete Wavelet 
Transform (DWT) with a Convolutional Neural Network 
(CNN). This approach efficiently captures both time-domain 
and frequency-domain features of respiratory signals, 
resulting in highly accurate and robust classification of  OSA, 
CSA, and MSA. By harnessing the powerful feature extraction 
abilities of DWT along with the deep learning capabilities of 
CNNs, the study achieves classification accuracies of 92.8% 
for OSA, 92.6% for CSA, and 90.0% for MSA, outperforming 
many existing techniques. The results demonstrate the 
potential of this approach as a reliable, efficient, and non-
intrusive solution for sleep apnea diagnosis, offering a 
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promising tool for enhancing patient outcomes and facilitating 
large-scale sleep studies. 

Despite the promising results, the study has some 
limitations. Firstly, the current implementation is offline, 
which limits its applicability in real-time scenarios where 
immediate feedback is essential. Secondly, the dataset used, 
while comprehensive, is relatively small and may not fully 
represent the diversity of sleep apnea presentations in different 
populations. This could affect the generalizability of the 
model to broader and more varied patient groups. 
Additionally, the study focuses solely on respiratory signals, 
excluding other physiological signals such as ECG or EEG 
that could potentially enhance the model's accuracy and 
diagnostic capabilities. 

Future work could address these limitations by optimizing 
the CNN model for real-time processing, enabling its 
integration into wearable devices for continuous monitoring 
and immediate diagnosis. Expanding the dataset to include a 
more diverse and larger population would further validate the 
model’s robustness and generalizability. Moreover, 
incorporating multi-modal data, such as ECG or EEG signals, 
could enhance the classification accuracy and provide a more 
comprehensive diagnostic tool. Additionally, exploring the 
application of this methodology to other sleep-related 
disorders could broaden its impact in the field of sleep 
medicine. Finally, developing a user-friendly interface for 
clinicians and patients would facilitate the adoption of this 
technology in real-world settings, improving its accessibility 
and usability.. 
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