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Abstract : Finite Ring Automata Homomorphism has been defined. Let (Q1, +1, . 1 , Ʃ1, δ1’, δ1”, p0, 

F1) and (Q2, +2, . 2 , Ʃ2 , δ2’, δ2”, q0, F2) be two Finite Ring Automata. Let f:Σ1→Σ2 be a bijection. 

Let Ψ : Q1 → Q2 be a Finite Ring Automata Homomorphism. If x is a string accepted by the Finite 

Ring Automata (Q1, +1, . 1 , Ʃ1, δ1’, δ1”, p0, F1), then f(x) is a string accepted by Finite Ring 

Automata (Q2, +2, . 2 , Ʃ2 , δ2’, δ2”, q0, F2). A Two Initial States Finite Ring Automaton has been 

defined. Any Two Initial States Finite Ring Automaton (Q, +, . , Ʃ, δ1, δ2 ,p0, q0, F) induces two 

Finite Binary Automata. Any Two Initial States Finite Ring Automaton (Q, +, . , Ʃ, δ1, δ2 ,p0, q0, F) 

induces two Finite Group Automata if (Q, +, . ) is a field. If (Q, +, . , Ʃ, δ1, δ2 ,p0, F) is a Finite 

Ring Automaton, then there exists a Two Initial States Finite Ring Automaton corresponding to the 

given Finite Ring Automaton (Q, +, . , Ʃ, δ1, δ2 ,p0, F). If LTR(M) is a Language accepted by a Two 

Initial States Finite Ring Automaton (Q, +, . , Ʃ, δ1, δ2 ,p0, q0, F), then any language accepted by 

the Induced Finite Group Automata (Q, +, Ʃ, δ1, p0, F) contains LTR(M). If LTR(M) is a Language 

accepted by a Two Initial States Finite Ring Automaton (Q, +, . , Ʃ, δ1, δ2 ,p0, q0, F), then any 

language accepted by the induced Finite Group Automata (Q, . , Ʃ, δ2, q0, F) contains LTR(M). Let 

(Q1, +1, . 1 , Ʃ1, δ1’, δ1”, p0’, p0”,F1) and (Q2, +2, . 2 , Ʃ2 , δ2’, δ2”, q0’, q0”,F2) be two TIS Finite Ring 

Automata. Let f:Σ1→Σ2 be a bijection. Let Ψ : Q1 → Q2 be a TIS Finite Ring Automata 

Homomorphism.    If    x    is    a    string    accepted    by    the    TIS    Finite    Ring    Automata 

(Q1, +1, . 1 , Ʃ1, δ1’, δ1”, p0’, p0”,F1), then f(x) is a string accepted by TIS Finite Ring Automata 

(Q2, +2, .2 , Ʃ2 , δ2’, δ2”, q0’, q0”,F2) 
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I INTRODUCTION 

 
We have different types of machine in the world. An Automaton is a typical machine. It is a 

mathematical model of a system with inputs and outputs. A machine may have an infinite variety 

of possible histories. But it will need an infinite capacity for storing them. We shall concentrate on 

those machines whose past histories can affect their future behavior in only a finite number of 

ways. We consider only finite automata and finite ring automata. There are some machines which 

works in different directions. Therefore we take Two Initial States Finite Ring Automaton. These 

type of machines may work in two different directions. Some times to know about a machine one 

can study homomorphic images of another machine. The theory of Automata plays an 

important role in many fields. It has become a part of computer science. It is very useful in 

electrical engineering. It provides useful techniques in a wide variety of applications. Therefore 

the theory of Finite Ring Automata, Two Initial States Finite Ring Automata and the 

homomorphic images of Finite Ring Automata will be play an important role in many fields. 

 
II PRELIMINARIES 

 
 

2.1 Definition : Alphabet: An alphabet is a finite set of symbols. 

 
2.2 Example: ∑ = { a,b,c } is an alphabet. 

 
2.3 Example: ∑ = { 0,1 } is an alphabet. 

 
2.4 Definition : Strings (or Word): A string (or word) is a finite sequence of symbols 

juxtaposed. 

2.5 Example : Letters and digits are examples of frequently used symbols. 

 
2.6 Definition : They length of a string w, denoted |w|, is the number of symbols composing 

the string. 

2.7 Definition : Concatenation : The concatenation of two strings is the string formed by 

writing the first followed by the second, with no intervening space. 

2.8 Definition : Language : A language is a set of strings of symbols from some alphabet. 

The set of all strings over a fixed alphabet Σ is denoted by Σ*. 
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2.9 Definition : Finite Automaton : A finite automaton is a 5–tuple (Q, Σ, δ, q0, F), where Q 

is a finite set of states, Σ is a finite input alphabet, q0 in Q is the initial state, F⊆Q is the set of final 

states, and δ is the transition function mapping Q x Σ to Q. 

2.10 Definition   :   A   string   x   is    said    to    be    accepted    by    a    finite    automaton 

(Q, Σ, δ, q0, F) if δ (q0, x) = p for some p in F. The language accepted by the finite automaton is 

the set {x |δ(q0, x) is in F}. 

2.11 Definition : A language is a regular set (or just regular) if it is the set accepted by some 

finite automaton. 

2.12 Definition : A nondeterministic   finite   automaton   is   a   quintuple (Q, Σ, δ, q0, F) 

with all components as in the deterministic finite automaton, but δ, the transition function, 

maps Q x Σ to 2Q. 

2.14 Theorem . Let L be a set accepted by a nondeterministic finite automaton. Then there 

exists a deterministic finite automaton that accepts L. 

2.15 Definition : Finite Binary Automaton: A Finite Binary Automaton is a 6-tuple 

(Q, *, Ʃ, δ, q0, F), where Q is a finite set of elements called states, * is a mapping from Q×Q to Q, 

Σ is a finite set of integers, q0 in Q is a state called the initial state and F⊆Q and F is the set of 

states called final states and δ is the transition function mapping from Q×Σ to Q defined by the 

operation in the group (Q, * ), for example δ(q,n) = qn. 

If Σ* is the set of strings of inputs, then the transition function δ is extended as follows : 

For m ϵ Σ* and n ϵ Σ, δ’: Q×Σ* → Q is defined by δ’(q,mn) = δ(δ’(q,m),n). If no confusion arises 

δ’ can be replaced by δ. 

2.16 Definition :   Finite Group Automaton : A Finite Group Automaton is a 6-tuple 

(Q, *, Ʃ, δ, q0, F), where Q is a finite set of elements and the elements are called states and (Q, * ) 

is a group, Σ is a subset of integers and the integers are called inputs, q0 ϵ Q and the state q0 

is called the initial state, F⊆Q and the states (elements) of F are called final states, δ is the 

transition function mapping Q x Σ to Q defined by the operation in the group (Q, * ). 

For example δ(q,n) = q * q * q *…..* q (n times). 

If   Σ*   is the set of strings of inputs,   then the transition function δ is   extended as    follows : 

For m ϵ Σ* and n ϵ Σ, δ’: Q×Σ* → Q is defined by δ’(q,mn) = δ(δ’(q,m),n). 
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2.17 Definition : Nondeterministic Finite Group Automaton (NDFGA) : A 

Nondeterministic Finite Group Automaton is a 6-tuple (Q, *, Ʃ, δ , q0, F), where Q,*, Ʃ, q0 and 

F are the same as in Finite Group Automaton, but δ : Q ×Σ→ 2Q . 

2.18 Theorem : Let L be a language accepted by a Nondeterministic Finite Group Automaton. 

Then there is a Deterministic Finite Group Automaton that accepts L. 

2.19 Definition : Finite Ring Automaton : A Finite Ring Automaton is an 8-tuple (Q, +, . , Ʃ, 

δ1, δ2 ,q0, F), where Q is a finite set of elements called states and (Q, +, . ) is a ring, Σ is a finite set 

of integers, q0 in Q is a state called the initial state and F⊆Q and F is the set of states called final 

states and δ1, δ2 are transition functions from Q×Σ to Q defined by δ1(q,n) = nq and δ2(q,n) = qn
 

If Σ* is the set of strings of inputs, then the transition functions δ1, δ2 can be extended as follows : 

 
For m ϵ Σ* and n ϵ Σ, δ1

’: Q×Σ* → Q is defined by δ1‘(q,mn) = δ1 (δ1’(q,m),n). 

To reduce the number of notations, δ1’ can be replaced by δ1. 

For m ϵ Σ* and n ϵ Σ, δ2
’: Q×Σ* → Q is defined by δ2‘(q,mn) = δ2 (δ2’(q,m),n). 

To reduce the number of notations, δ2’ can be replaced by δ2. 

A Finite Ring Automaton can be simply expressed by FRA 

 
2.20 Definition   :   A   string   x   is   said   to   be    accepted    by    Finite   Ring   Automaton 

(Q, +, . , Ʃ, δ1, δ2 ,q0, F) if δ1(q0,x) ϵ F and δ2(q0,x)ϵ F. The language accepted by the given finite 

ring automaton is the set {x | δ1(q0,x) ϵ F and δ2(q0,x)ϵ F }. We shall denote the language accepted 

by the given finite ring automaton by LR(M), where as the language accepted by the given finite 

group automaton can be denoted by LG(M). 

2.21 Definition : Let (Q, +, . , Ʃ, δ1, δ2 ,q0, F) be a Finite Ring Automaton. Then the transition 

ranges of δ1 and δ2 of the subset {a1,a2, a3,………,ak} of Q are defined to be 

δ1({a1,a2,a3,…,ak} , n)} = { δ1(a1 , n)} � { δ1(a2 , n)} � ……. � { δ1(ak , n)} 

δ2({a1,a2,a3,…,ak} , n)} = { δ2(a1 , n)} � { δ2(a2 , n)} � ……. � { δ2(ak , n)} 

 
2.22 Definition : Nondeterministic Finite Ring Automaton (NDFRA) : A 

Nondeterministic Finite Ring Automaton is an 8-tuple (Q, +, . , Ʃ, δ1, δ2 ,q0, F), where Q, +, . , Ʃ, 

q0, F have the same meaning as in Deterministic Finite Ring Automaton but the transition 

functions δ1, δ2 are from Q×Σ to 2Q defined by δ1(q,n) = {nq} and δ2(q,n) = {qn } 
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2.23 Theorem : Let LR(M) be a language accepted by a Nondeterministic Finite Ring 

Automaton. Then there is a Deterministic Finite Ring Automaton that accepts LR(M). 

 
III FINITE RING AUTOMATA HOMOMORPHISM (FRA HOMOMORPHISM) 

 
 

3.1 Definition : Let (Q1, +1, .1 , Ʃ1, δ1’, δ1”, p0, F1) and (Q2, +2, .2 , Ʃ2 , δ2’, δ2”, q0, F2) be two 

Finite Ring Automata. Suppose there is a one to one correspondence between Σ1 and Σ2. 

Let f:Σ1→Σ2 be a bijection. Then a mapping Ψ : Q1 → Q2 is said to be a Finite Ring Automata 

Homomorphism or simply FRA Homomorphism if 

1. Ψ(a+1b) = Ψ(a) +2 Ψ(b), for all a,bϵQ1 

 
2. Ψ(a .1 b) = Ψ(a) .1 Ψ(b), for all a,bϵQ1 

 

3. Ψ(δ1’(a,n)) = δ2’ (Ψ(a), f (n)), for all aϵQ1 and nϵ∑1 

4. Ψ(δ1’’(a,n)) = δ2’’(Ψ(a), f (n)), for all aϵQ1 and nϵ∑1 

5. Ψ(p0) = q0 

6. a ϵ F1 if and only if Ψ(a) ϵ F2. 

 
 

3.2   Theorem : Let (Q1, +1, . 1 , Ʃ1, δ1’, δ1”, p0, F1) and (Q2, +2, . 2 , Ʃ2 , δ2’, δ2”, q0, F2) be two 

Finite Ring Automata. Let f:Σ1→Σ2 be a bijection. Let Ψ : Q1 → Q2 be a Finite Ring 

Automata   Homomorphism.   If   x   is   a   string   accepted   by   the   Finite    Ring   Automata 

(Q1, +1, . 1 , Ʃ1, δ1’, δ1”, p0, F1), then f(x) is a string accepted by Finite Ring Automata 

(Q2, +2, .2 , Ʃ2 , δ2’, δ2”, q0, F2) 

 
Proof : Let (Q1, +1, . 1 , Ʃ1, δ1’, δ1”, p0, F1) and (Q2, +2, . 2 , Ʃ2 , δ2’, δ2”, q0, F2) be two Finite Ring 

Automata. Let f:Σ1→Σ2 be a bijection. 

Let Ψ : Q1 → Q2 be a Finite Ring Automata Homomorphism. 

Suppose x is a string accepted by the Finite Ring Automata (Q1, +1, .1 , Ʃ1, δ1’, δ1”, p0, F1). 

Then δ1‘(p0,x) ϵ F1 and δ1‘’(p0,x)ϵ F1. 

It is enough to prove for any n ϵ∑1 

Since Ψ : Q1 → Q2 is a Finite Ring Automata Homomorphism, a ϵ F1 if and only if Ψ(a) ϵ F2. 

Ψ (δ1‘(p0,x)) ϵ F2 and Ψ (δ1‘’(p0,x))ϵ F2. 
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Ψ(δ1’(p0,n)) = δ2’ (Ψ(p0), f (n)) 

 
Ψ : Q1 → Q2 is a Finite Ring Automata Homomorphism => Ψ(p0)=q0 

Therefore, δ2’ (Ψ(p0), f (n)) = δ2’ (q0, f (n)) ϵ F2 

Ψ (δ1‘’(p0,x)) = δ2’’(Ψ(p0), f (n)) = δ2’’(q0, f (n)) ϵ F2 

 
Therefore, f (n) is accepted by the Finite Ring Automata (Q2, +2, . 2 , 

Ʃ2 , δ2’, δ2”, q0, F2) 

Since x is a string formed by the states of Σ1 , f(x) is a string formed 

by the states of Σ2. 

Hence f(x) is a string accepted by Finite Ring Automata (Q2, +2, . 2 , 

Ʃ2 , δ2’, δ2”, q0, F2) 

IV TWO INITIAL STATES FINITE RING AUTOMATON 

 
4.1 Definition : Two Initial States Finite Ring Automaton : A Two Initial States Finite Ring 

Automaton is a 9-tuple (Q, +, . , Ʃ, δ1, δ2 ,p0, q0, F), where Q is a finite set of elements called states 

and (Q, +, . ) is a ring, Σ is a finite set of integers and p0 , q0 are two initial states in Q and F⊆Q and 

F is the set of states called final states and δ1, δ2 are transition functions from Q×Σ to Q defined by 

δ1(q,n) = nq and δ2(q,n) = qn. 

Note :   Finite Ring Automaton and Two Initial States Finite Ring Automaton differ not only by 

the number of initial states but they differ by the acceptance of strings. 

If Σ* is the set of strings of inputs, then the transition functions δ1, δ2 can be extended as follows : 

 
For m ϵ Σ* and n ϵ Σ, δ1

’: Q×Σ* → Q is defined by δ1‘(q,mn) = δ1 (δ1’(q,m),n). 

To reduce the number of notations, δ1’ can be replaced by δ1. 

For m ϵ Σ* and n ϵ Σ, δ2
’: Q×Σ* → Q is defined by δ2‘(q,mn) = δ2 (δ2’(q,m),n). 

To reduce the number of notations, δ2’ can be replaced by δ2. 

A Two Initial States Finite Ring Automaton can be simply expressed by TIS FINITE RING 

AUTOMATON or TISFRA 

4.2 Definition : A string x is said to be accepted by a Two Initial States Finite Ring 

Automaton (Q, +, . , Ʃ, δ1, δ2 , p0, q0, F) if δ1(p0,x) ϵ F and δ2(q0,x)ϵ F. The language accepted by 
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the given Two Initial States finite ring automaton is the set {x | δ1(p0,x) ϵ F and δ2(q0,x)ϵ F }. We 

shall denote the language accepted by the given Two Initial States finite ring automaton by LTR(M). 

4.3 Theorem : Any Two Initial States Finite Ring Automaton (Q, +, . , Ʃ, δ1, δ2 ,p0, q0, F) 

induces two Finite Binary Automata. 

Proof : They are (Q, +, Ʃ, δ1, p0, F) and (Q, . , Ʃ, δ2, q0, F). 

 
4.4 Theorem : Any Two Initial States Finite Ring Automaton (Q, +, . , Ʃ, δ1, δ2 ,p0, q0, F) 

induces two Finite Group Automata if (Q, +, . ) is a field. 

Proof : They are (Q, +, Ʃ, δ1, p0, F) and (Q\{0}, . , Ʃ, δ2, q0, F). 

 
4.5 Theorem : If (Q, +, . , Ʃ, δ1, δ2 ,p0, F) is a Finite Ring Automaton, then there exists a 

Two Initial Finite Ring Automaton corresponding to the given Finite Ring Automaton 

(Q, +, . , Ʃ, δ1, δ2 ,p0, F). 

Proof : It is (Q, +, . , Ʃ, δ1, δ2 ,p0, p0, F). 

 
4.6 Theorem : If LTR(M) is a Language accepted by a Two Initial States Finite Ring Automaton 

(Q, +, . , Ʃ, δ1, δ2 ,p0, q0, F), then any language accepted by the Induced Finite Group Automata 

(Q, +, Ʃ, δ1, p0, F) contains LTR(M). 

Proof : The proof comes from the definition of the language accepted by Finite Ring Automaton 

and Two Initial States Finite Ring Automaton 

4.7 Theorem : If LTR(M) is a Language accepted by a Two Initial States Finite Ring Automaton 

(Q, +, . , Ʃ, δ1, δ2 ,p0, q0, F), then any language accepted by the induced Finite Group Automata 

(Q, . , Ʃ, δ2, q0, F) contains LTR(M). 

Proof : The proof is similar to the proof of Theorem 4.6 

 
 

V TWO INITIAL STATES FINITE RING AUTOMATON AND HOMOMORPHISM 

 
 

5.1  Definition : Let (Q1, +1, . 1 , Ʃ1, δ1’, δ1”, p0’, p0”,F1) and (Q2, +2, . 2 , Ʃ2 , δ2’, δ2”, q0’, q0”,F2) 

be two Finite Ring Automata. Suppose there is a one to one correspondence between Σ1 and Σ2. 

Let f:Σ1→Σ2 be a bijection. Then a mapping Ψ : Q1 → Q2 is said to be a TIS Finite Ring 

Automata Homomorphism or simply TISFRA Homomorphism if 

1. Ψ(a+1b) = Ψ(a) +2 Ψ(b), for all a,bϵQ1 
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2. Ψ(a .1 b) = Ψ(a) .1 Ψ(b), for all a,bϵQ1 

 

3. Ψ(δ1’(a,n)) = δ2’ (Ψ(a), f (n)), for all aϵQ1 and nϵ∑1 

4. Ψ(δ1’’(a,n)) = δ2’’(Ψ(a), f (n)), for all aϵQ1 and nϵ∑1 

5. Ψ(p0’) = q0’ and Ψ(p0”) = q0” 

6. a ϵ F1 if and only if Ψ(a) ϵ F2. 

 
 

5.2   Theorem : Let (Q1, +1, . 1 , Ʃ1, δ1’, δ1”, p0’, p0”,F1) and (Q2, +2, . 2 , Ʃ2 , δ2’, δ2”, q0’, q0”,F2) 

be two TIS Finite Ring Automata. Let f:Σ1→Σ2 be a bijection. Let Ψ : Q1 → Q2 be a TIS Finite 

Ring Automata Homomorphism. If x is a string accepted by the TIS Finite Ring Automata 

(Q1, +1, . 1 , Ʃ1, δ1’, δ1”, p0’, p0”,F1), then f(x) is a string accepted by TIS Finite Ring Automata 

(Q2, +2, .2 , Ʃ2 , δ2’, δ2”, q0’, q0”,F2) 

 
Proof : Let (Q1, +1, . 1 , Ʃ1, δ1’, δ1”, p0’, p0”,F1) and (Q2, +2, . 2 , Ʃ2 , δ2’, δ2”, q0’, q0”,F2) be two TIS 

Finite Ring Automata. 

Let f:Σ1→Σ2 be a bijection. Let Ψ : Q1 → Q2 be a TIS Finite Ring Automata Homomorphism. 

Suppose x is a string accepted by the TIS Finite Ring Automata (Q1, +1, .1 , Ʃ1, δ1’, δ1”, p0, F1). 

Then δ1‘(p0’, x) ϵ F1 and δ1‘’(p0”, x)ϵ F1. 

It is enough to prove for any n ϵ∑1 

 
Since Ψ : Q1 → Q2 is a TIS Finite Ring Automata Homomorphism, a ϵ F1 if and only if Ψ(a) ϵ F2. 

Ψ (δ1‘(p0’, x)) ϵ F2 and Ψ (δ1‘’(p0”, x))ϵ F2. 

Ψ(δ1’(p0’,n)) = δ2’ (Ψ(p0’), f (n)) 

 
Ψ : Q1 → Q2 is a TIS Finite Ring Automata Homomorphism 

=> Ψ(p0’) = q0’ and Ψ(p0”) = q0” 

 
Therefore, δ2’ (Ψ(p0’), f (n)) = δ2’ (q0’, f (n)) ϵ F2 

 
Ψ (δ1‘’(p0”,x)) = δ2’’(Ψ(p0”), f (n)) = δ2’’(q0”, f (n)) ϵ F2 

Therefore, f (n) is accepted by the TIS Finite Ring Automata (Q2, +2, .2 , Ʃ2 , δ2’, δ2”, q0’, q0”,F2) 

Since x is a string formed by the states of Σ1 , f(x)  is a string formed by the states of Σ2. 

Hence f(x) is a string accepted by the TIS Finite Ring Automata (Q2, +2, .2 , Ʃ2 , δ2’, δ2”, q0’, q0”,F2) 
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VI CONCLUSION : There are some machines which works in different directions. 

Therefore we take Two Initial States Finite Ring Automata also. These type of machines may 

work in two different directions so that the number of machines may be reduced. Some times to 

know about a machine one can study homomorphic images of another machine. The study of 

Finite Ring Automata, Two Initial States Finite Ring Automata and their homomorphic images 

will lay a new milestone. 
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