
 

 

 

Towards Preventing Password Thefts at Kernel Level using Terminate and Stay 

Resident Programs 

 

N.G. Nageswari Amma1 and N.G. Bhuvaneswari Amma2 
1Department of Computer Science, Muslim Arts College, Thiruvithancode, Kanyakumari, Tamil Nadu, India. 

2Department of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India. 

 

 

Abstract 

 

Terminate and Stay Resident (TSR) programs are application programs that always stay in the system 

once these are loaded and executed, until the system is shut down. TSR programs are highly used 

tools in password hacking techniques. For instance, a TSR can be designed as a screen lock program 

that prompts the user for entering the proper password for unlocking the screen which was locked for 

no activity on the system for a certain period of time. Such a TSR can be invoked automatically with 

malicious intention before the actual screen lock program runs. This malicious TSR captures and 

passes the password to any malicious program in the system or stores some where for further use. 

Presently no standard mechanism is available for preventing all such malicious TSR programs from 

stealing the passwords without the knowledge of the user. Albeit some third-party tools exist for this 

purpose these are at application level and cannot prevent all types of TSRs. Moreover, these were 

designed as particular TSR specific solutions. In this study, an algorithm is proposed that can be 

implemented in Operating System (OS) kernel for preventing all types of TSRs from stealing the 

system passwords. This solution needs no special software or hardware or any third-party tool. 

Furthermore, the user need not know any thing about this change in the OS. The proposed solution 

consists of modification of keyboard device driver, inclusion of new encryption and decryption 

modules in the kernel modules of which the later has been implemented in Linux kernel 5.3 of SUSE 

15 Linux distribution. 

 

Keywords: Hacker, Kernel, Password theft, TSR program 

 

1. Introduction 

 

As the deployment and usage of computer systems grow larger and larger, the security threats are also 

increasing. Many viruses, worms, trojans, and other computer threats are being found day by day [1]. 

At the same time effective solutions are also being developed. For instance, until now 12,000 

different attacks were found on MS Windows where as it was only 30 on Linux due to its stringent 

access control policies on the users [2]. Albeit Linux offers many security features, all those features 

are dependent on the secrecy of the root password [3]. Because, once the root password is out, no 

security policy or feature can prevent any attack on the system and hence all the advantages are gone. 

In the same manner many security policies in the system are strongly dependent on the passwords or 

password related mechanisms. Hence, obviously strong and reliable password protection mechanisms 

are needed. 
 

 

 

 

OEIL RESEARCH JOURNAL (ISSN NO:0029-862X) VOLUME 20 ISSUE 1 2022

PAGE N0: 29



 

 

Many password stealing mechanisms exist in the literature. Terminate and Stay Resident (TSR) 

programs are one of the best and easiest methods of stealing the passwords [4]. TSR programs are 

application programs that always stay in the system once these are loaded and executed, until the 

system is shut down. A TSR can be easily created to mislead the legitimate user and to capture the 

certain system passwords. Presently no standard mechanism is available for preventing all such TSR 

programs from stealing the passwords. Albeit some third-party tools exist for this purpose at 

application level and cannot prevent all types of TSRs [5]. In this study, an algorithm is proposed that 

can be implemented in OS kernel for preventing all types of TSRs, which act as the screen lock 

programs and other programs in the same manner, from stealing the system passwords. 

 

The rest of the paper is organized as follows: In section 2, the overview of the related past work is 

given. In section 3, the proposed algorithm and its working are described. In section 4, the pros and 

cons of the proposed mechanism are discussed. Finally, section 5 concludes the paper. 

 

2. Related Works 

 

The TSR programs mentioned in this study are basically a type of key loggers discussed in [6][7][8]. 

Key logger is a program which captures the user key strokes of the standard key board. The key 

strokes can be the password characters or some important user data. The key loggers are categorized 

as follows: 

 

2.1 Hardware Key Loggers 

 

Hardware key loggers are small inline devices placed in between the keyboard and the computer. The 

user of the computer cannot detect these loggers for long periods of time as the size of the device is 

small. However, these require physical access to the machine. These hardware devices have the 

power to capture hundreds of keystrokes including banking and email username and passwords. 

Nowadays attackers are working intelligently to hack all the confidential information. 

 

2.2 Software Key Loggers 

 

This type of logging is accomplished using the Windows function SetWindowsHookEx() that 

monitors all keystrokes. The spyware will typically come packaged as an executable file that initiates 

the hook function, plus a DLL file to handle the logging functions. An application that calls 

SetWindowsHookEx() is capable of capturing even auto complete passwords. During this pandemic 

period, almost 85% of the population is depending on the Internet that makes the attacker to easily 

hack the passwords and proceed further to perform all sorts of attacks. 

 

2.3 Kernel Level Key Loggers 

 

This type of key logger is at the kernel level and receives data directly from the input device such as 

keyboard. It replaces the core software for interpreting keystrokes. It can be programmed to be 

virtually undetectable by taking advantage of the fact that it is executed on boot, before any user-level 

applications start. Since the program runs at the kernel level, one inability of this approach is that it 

fails to capture auto complete passwords, as this information is passed in the application layer. 
 

 
 

OEIL RESEARCH JOURNAL (ISSN NO:0029-862X) VOLUME 20 ISSUE 1 2022

PAGE N0: 30



 

 

Generally different solutions such as anti-key loggers, virtual key boards, and firewalls exist to 

defend from those key loggers. Existing solutions and their drawbacks are as follows: 

 

a) Software anti-key loggers are good defendable tools for software key loggers but these are not 

suitable for kernel level key loggers, which act directly on the key board registers. 

b) Kernel level anti-key loggers are suitable for both the types of key loggers but these generally 

encrypt each and every character typed by the user by putting more processing burden on the 

processor. 

c) Virtual key boards also called on-screen boards can be used for entering passwords but these 

are prone to screen grabbers, which can scan every action on the screen there by estimating 

the passwords [5]. 

d) Enabling a firewall does not stop key loggers from stealing the passwords, but can possibly 

prevent transmission of the logged material over the net [4]. 

 

This study deals with the software and kernel level key loggers as the solution is developed for 

execution in the kernel. But it does not deal with the hardware tampering as in hardware key loggers. 

 

3. Proposed Solution 

 

The proposed solution keeps the system passwords safe using symmetric encryption at the keyboard 

registers level even though the hacker captures them using some sort of TSR programs. 

 

The solution works based on the following: 

a) The mode of the operation (read/write) by the application on the password file, which stores 

the system passwords. 

b) The data entered by the user (passwords/ ordinary data). 

 

If the running program is screen lock program, the mode of operation is read and if the program is 

password changing application the mode is write. Instead of encrypting each and every character that 

user has typed a simple hot key mechanism is used to differentiate the critical data to ordinary data. 

The user has to use CTRL+ALT+P before entering the password and CTRL+ALT+Q after entering 

the password. A simple and less complex symmetric encryption in the key board device driver and a 

pair of symmetric encryption and decryption routines in the kernel with the same key is introduced. 

This encryption does not affect the actual encryption that takes place on the password files. 

The solution can be described in two perspectives as follows: 

 

3.1 Legitimate User’s Perspective 

 

The flow chart for the proposed mechanism in legitimate user perspective is depicted in Fig. 1. The 

shaded portion of the diagram is the actual flow of the proposed solution. Remaining portion is the 

conventional flow. 

 

a) When the user is about to enter the passwords into screen lock or password changing 

programs first the user will give the hot key combination CTRL+ALT+P, which informs the 

keyboard driver to set a flag keyreg and encrypt the following data before putting into the 

registers. 
 

 

OEIL RESEARCH JOURNAL (ISSN NO:0029-862X) VOLUME 20 ISSUE 1 2022

PAGE N0: 31



 

 

 

 
 

Fig. 1: Flow Chart of Legitimate User Perspective 

 

OEIL RESEARCH JOURNAL (ISSN NO:0029-862X) VOLUME 20 ISSUE 1 2022

PAGE N0: 32



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Flow Chart of Hacker perspective 

 

OEIL RESEARCH JOURNAL (ISSN NO:0029-862X) VOLUME 20 ISSUE 1 2022

PAGE N0: 33



 

 

b) Now if the application uses the password file in read mode, i.e., screen lock program and the 

flag keyreg is set, the corresponding password contents will be read from the password file 

and encrypted before comparing with the password entered by the user. The comparison 

results in a match as both passwords are encrypted with the same symmetric key. 

 

c) If the application uses the password file in write mode, i.e., password changing program and 

the flag keyreg is set, the entered and encrypted password will again be decrypted before 

writing into the file. 

 

3.2 Hacker’s Perspective 

 

As the TSR program can read the passwords through the keyboard registers at its best that is through 

kernel level key logger, the hacker knows only the encrypted password. Further the hacker may or 

may not know the existence of the hot key mechanism. In both the cases the hacker is prevented from 

stealing the password. The flow chart for the proposed mechanism in hacker perspective is depicted 

in Fig. 2. The lightly shaded portion of the diagram will happen when the hacker tries to access the 

system. The strongly shaded portion of the diagram will not be happened as the hacker can not work 

with write access to the resources at that point of time. 

 

a) If the hacker knows the hot key mechanism, he/she will enter the already encrypted password 

after hot keys and hence it is twice encrypted for comparison with password from password 

file, leading to denial of access. 

 

b) If the hacker does not know the hot key mechanism or intentionally not using the mechanism, 

the flag keyreg will not be set. Therefore, even though the application is in read mode, as the 

flag is not set, the corresponding password contents of password file will not be encrypted for 

comparison with the entered not encrypted password leading to denial of access. 

 

The following example makes the idea clear: 

 

Suppose the password is shrish and for simplicity assume that the encryption is toggling the letters of 

even and odd positions. 

 

a) The user entered the password after hot key combination. Now the keyboard registers will 

have the password as hsirhs. The hacker can read this only. 

 

b) If the user wants to save the password into password file, the access will write and hence it 

will be decrypted into shrish before writing into the file. 

 

c) If the user using password in the application like screen lock program, the access will be read 

and hence the password file contents, shrish, will be encrypted into hsirhs, which is used for 

comparison leading to granting access. 

 

d) If the hacker enters the password as hsirhs without hot key combination it will be compared 

with the contents of the password file shrish without encryption leading to denial of access. 
 

 
 

OEIL RESEARCH JOURNAL (ISSN NO:0029-862X) VOLUME 20 ISSUE 1 2022

PAGE N0: 34



 

 

e) If the hacker enters the password with hot key mechanism, encryption will be done twice to 

make it shrish. It will be compared with hsirhs which is taken from encrypting the contents of 

the password file leading to denial of access. 

 

3.3 Algorithms 

 

3.3.1 Algorithm 1: Part of Modified Keyboard Driver 

 
 

ReadScanCodes (scancode); 

if (scancode = = ‘CTRL + P’) 

{ 

 

} 

else 

{ 

keyreg = true; 

 

 

if (keyreg) 

{ 

tempkeycode = Encrypt (scancode); 

} 

SetKeyRegisters (tempkeycode); 

} 
 

3.3.2 Algorithm 2: Accessing the Password File 

 
 

if (mode = = ‘r’) 

{ 

if (CheckPermission (processid, fileid, ‘r’)) 

{ 

temppassword = Read (passwordid, fileid); 

if (keyreg = = true) 

{ 

temppassword = Encrypt (temppassword); 

} 

} 

if (Compare (temppassword, userpassword)) 

{ 

PermitAccess(); 

} 

else DenyAccess(); 

keyreg = false; 

} 

if (mode = = ‘w’) 

{ 

temppassword = userpassword; 
 

OEIL RESEARCH JOURNAL (ISSN NO:0029-862X) VOLUME 20 ISSUE 1 2022

PAGE N0: 35



 

 

if (CheckPermission (processed, fileid, ‘w’)) 

{ 

if(keyreg = = true) 

temppassword = Decrypt (userpassword); 

Write (passwordid, fileid, temppassword); 

} 

keyreg = false; 

} 
 

4. Pros and Cons of the Proposed Solution 

 

The positive side of the solution is, it requires no special hardware or software or third-party tools for 

designing this solution. Even the end user need not know any thing about this change except the 

usage of hot key combination. As the solution can be uploaded into the kernel as Dynamically 

Loadable Modules (DLM) [9] it is backward compatible as those modules can be loaded and removed 

as and when needed. By implementing this solution into open-source kernel such as Linux 

distributions, the strength and other security features of such operating systems remains unaltered. 

 

Another side, this solution is designed only for a specific class of password thefts. Hundreds of 

methods exist in the literature for password thefts. And this solution can not be ported into other 

Operating Systems that are not open source [10]. This method seems to be increasing the load on the 

processor due to another layer of encryption. But care has been taken so that encryption will be used 

only on critical data such as passwords which may not leave burden on the processor. The main 

drawback of this approach is it does not work with the web related passwords as they will be stored 

somewhere in the internet and those servers are not accessible to the host system. 

 

5. Conclusion 

 

A kernel level mechanism for preventing system password thefts by TSR programs has been 

proposed. The key idea is using one more level of encryption on the passwords at the keyboard 

registers to mislead the TSRs on the content of the passwords. Care has been taken to reduce the load 

of the encryption by using some hot key combination. Based upon the access mode of the password 

file and hot key combination an intelligent escape from the TSR to capture the password has been 

discussed. More over this approach does not require any hardware or software or any third-party tool. 

Even the user need not know this change in the kernel. 

 

References 
 

[1] Keyloggers, http://www.keylogger.org 
[2] U. Shafique and S.B. Zahur, “Towards Protection Against a USB Device whose Firmware has been 

Compromised or Turned as ‘BadUSB’”, In Proceedings of Future of Information and Communication 

Conference, pp. 975-987, 2019. 

[3] S. McClure, J. Scambray, and G. Kurtz, “Hacking Exposed”, McAfee, 5th edition, 2005. 

[4] Hacking novell local area networks, Fairfax Country, http://www.textfiles.com/hacking 
[5] Young, M. Yung, "Deniable Password Snatching: On the Possibility of Evasive Electronic Espionage," 

IEEE Symposium on Security & Privacy, pages 224-235, May 4-7, 1997. 

[6] Complete details of key logging, http://en.wikipedia.org/wiki/Keystroke_logging 
 
 

OEIL RESEARCH JOURNAL (ISSN NO:0029-862X) VOLUME 20 ISSUE 1 2022

PAGE N0: 36



 

 

[7] White paper on key loggers by sachin setty, http://www.securityfocus.com 

[8] Cormac Herley and Dinei Florencio, “How to Login From an Internet Cafe Without Worrying About 

Keyloggers”, Microsoft Research, Redmond. 

[9] Daniel P. Bovet, Marco Cesat, “Understanding Linux kernel”, O’Reilly (3rd edition), 2010. 

[10] Peter G. Smith, Charles, “Linux network security” by River Media, 2005. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OEIL RESEARCH JOURNAL (ISSN NO:0029-862X) VOLUME 20 ISSUE 1 2022

PAGE N0: 37


