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Abstract: The amount of heat convected 
from the fin surfaces has been determined 
by solving the general differential equation 
describing heat dissipation from the infinite 
fin via the calculus approach. Heat transfers 
by desirable quality of temperature gradient 
and the modes which transfer heat from one 
part of the medium to another are 
conduction, convection, and radiation. This 
paper is presenting the use of a Elzaki 
Transform for the analysis of uniform 
infinite fin by solving the general form of 
energy equation describing the heat 
dissipation from the surface of the medium 
and obtaining the distribution of temperature 
and hence the rate of heat convected into the 
surroundings from an infinite uniform fin. 
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negative sign indicates that the heat is 
transferring in the direction of decreasing 
temperature. Generally, the temperature 
distribution and hence the rate of heat 
convected from the infinite fin surface have 
been determined via the calculus approach 
[1-4]. This paper presents for the analysis of 
uniform infinite fin to obtain the temperature 
distribution and hence the rate of heat 
convected into the surroundings by uniform 
infinite fin. 

 
DEFINITIONS 

 
2.1 Elzaki Transform 

If the function ɦ(y), y ≥ 0 is having an 
exponential order and is a piecewise 
continuous function on any interval, then the 
Elzaki transform of ɦ(y) is given by 

INTRODUCTION 
 

Elzaki Transformation applied in solving 

∞ 

E{ɦ(y)} = ɦ̅(𝑝) = p ∫   e
−

 

0 

 
𝑦 

𝑝 ɦ(y)𝑦. 

boundary value problems in most of the 
science and engineering disciplines [1, 2, 3, 
4, 5, 6, 7]. It also comes out to be very 
effective tool to analyze differential 
equations, Simultaneous differential 
equations, Integral equations etc. [7, 8, 9, 
10, 11, 12, 13, 14]. spines are the extended 
surfaces projected from heat-conducting 
surfaces to improve the heat dissipation into 
the surroundings [1-3]. Fourier’s law 

expressed as H = −𝐾𝐴 
𝑑 

, is the basic law 
𝑑𝑦 

of conduction or dissipation of heat, where 𝑘 
is the thermal conductivity of the medium, 
𝘗 is the area of the cross-section of the 
medium, H is the rate of heat dissipated, 
𝑑𝘑 is  the  temperature  gradient  and  the 
𝑑𝑦 

The Elzaki Transform [1, 2, 3] of some of 
the functions are given by 

 𝐸 {𝑦𝑛} = 𝑘! 𝑝𝑛+2 , wℎe𝑟e 𝑘 = 

0,1,2, .. 

 𝐸 {e𝑎𝑦} =   
𝑝2     

, 
1−𝑎𝑝 

 𝐸 {𝑠i𝑘𝑎𝑦} = 
𝑎𝑝3 

, 
1+𝑎2𝑝2 

 𝐸 {𝑐o𝑠𝑎𝑦} = 
𝑎𝑝2 

, 
1+𝑎2𝑝2 

 𝐸 {𝑠i𝑘ℎ𝑎𝑦} = 
𝑎𝑝3 

, 
1−𝑎2𝑝2 

 𝐸 {𝑐o𝑠ℎ𝑎𝑦} = 
𝑎𝑝2 

. 
1−𝑎2𝑝2 

2.2 Inverse Elzaki Transform 

The Inverse Elzaki Transform of some of 
the functions are given by 
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 𝜎Ҏ 

𝑠 

2 0 

 E-1{𝑝𝑛} = 𝑦
𝑛−2

 

(𝑛−2)! 
, 𝑘 = 2, 3, 4 … 

the temperature of the surroundings of the infinite fin 
and is kept constant. 

 E-1{ 𝑝2 
} = e𝑎𝑦 

1 
For convenience, let ( )2 = 𝜇……. (b) 

1𝘗 
1−𝑎𝑝 

 E-1{ 𝑝
3 

1+𝑎2𝑝2 

 E-1{ 𝑝
2 

1+𝑎2𝑝2 

 E-1{ 𝑝
3 

1−𝑎2𝑝2 

 E-1{ 𝑝
2 

1−𝑎2𝑝2 

}= 1 sin 𝑎𝑦 
𝑎 

} =1 cos 𝑎𝑦 
𝑎 

}= 1 sin ℎ𝑎𝑦 
𝑎 

} =1 cos ℎ𝑎𝑦 
𝑎 

And (𝑦) − 𝑡𝑠 = 𝜑(𝑦) … … … (𝑐) known as the 
excess temperature at the length ‘y’ of the infinite fin. 
Then equation (4) can be rewritten as 
𝜑′′(𝑦) - 𝜇2 𝜑(𝑦) = 0 ............... (d) 
Equations (a) and (d) are the general form of energy 
equations for one-dimensional heat dissipation from 
the surface of the infinite fin. In equation (b), 𝜇 is a 
constant provided that 𝜎 is constant over the entire 
surface the infinite fin and 𝑘 is constant within the 
range of temperature considered. 

2.3 Elzaki Transform of Derivatives 

The Elzaki Transform [1, 2, 3] of some of 
the Derivatives of h(y) are given by 

 𝐸{ɦ′(𝑦)} = 
1 

ɦ̅(𝑝) − p ɦ(0), 
𝑝  ′′(   ) 
1   ̅ (   ) 

 
 

The necessary initial conditions are [e, f] 
(i) (0) = T. In terms of excess 

temperature, at y = 0, 𝘑 − 𝑡𝑠 = T- 𝑡𝑠 or 
(0) = 𝜑0… (e) 

(ii) 𝘑(∞) = 𝑡𝑠 .In terms of excess 
temperature, at y = ∞, 𝜑(∞) = 0 

Taking Elzaki Transform of equation (d), we get 
 1  ̅(q) – 𝜑(0) -𝑞𝜑′(0)- 𝜇2�̅�(q) = 0... (f) 

{ɦ   𝑦 } = ɦ(𝑝) − ɦ 0 − 
𝑝2 

pɦ′(0), 
𝑎𝑘𝑑 𝑠o o𝑘. 

FORMULATION 

𝑞2 

Applying boundary condition: (0) = 𝑟0, equation (f) 
becomes 
1  ̅(q) – 𝜑   − 𝑞𝜑′(0)- 𝜇2𝜑(q) = 0 

𝑞 

Or 
1  ̅(q) −  𝜇2�̅�(q) = 𝑞𝜑′(0) +  𝜑  ….. (g) 

 

𝑞2 0 

The differential equation which describes the heat 
dissipated from a uniform infinite fin is given by 

In this equation, 𝜑′(0)is some constant. 
Let us substitute 𝜑′(0) = 𝜔, 
Equation (g) becomes 

 
1  ̅(q) −  𝜇2𝑟̅(q) = 𝑞𝜔 + 𝜑 

 

𝑞2 

Or 

�̅�(q) =  𝑞
3𝜔 

(1−𝑞2 𝜇2) 

 

 

+  
𝑞2𝑐0 

(1−𝑞2 𝜇2) 

0 
 

 

……. (h) 

Taking inverse Elzaki Transform of above equation, 
we get 
𝜑(y)= 𝜔 𝑠i𝑘ℎ𝜇𝑦 +𝑟 

 

cos ℎ𝜇𝑦 
𝜇 0 

Or 
𝜇𝑦 −𝜇𝑦 

𝜑(y)= 𝜔 [ e𝜇𝑦 −  e−𝜇𝑦] +𝜑  [ 
e     + e 

]… (i) 
  

2𝜇 o 2 

Determination of the constant𝗌: 
Applying initial condition: (∞) = 0, we can write 

𝜎Ҏ 

𝜔 

2𝜇 
Or 

[ e𝜇(∞) − e−𝜇(∞)] + 𝜑o [
 e(∞) + e−𝜇(∞) 2 

] = 0 

𝑡′′(𝑦) - [𝘑(𝑦) − 𝑡 ] = 0 ……… (a), where Let us 
1𝘗 

consider that the one end of the fin is connected to a 
heat source at y = 0 and the other end at y = ∞ is free 
for losing heat into the surroundings. The source of 

𝜔 

2𝜇 

Or 

 
[ e𝛽(∞) − 0] + 𝜑o [ 

e(∞) + 0 

2 

 
] = 0 

heat is maintained at fixed temperature ‘T’ and 𝑡 is  
  

[ 
 
+ 

𝜑o
] e𝜇(∞) = 0 

𝑠 2𝜇 2 
As e(∞) ≠ 0, therefore, 
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𝜔 𝜑o 
[ + ] = 0 
2𝜇 2 

Or 
𝜔 = −𝜇𝜑o ................ (j) 
Put the value of 𝜔 from equation (j) in equation (i), 
we get 

into the environs can be better by increasing the 
surface area of the infinite fin. 
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