RoboCare— A Voice-Controlled Health Monitoring Robot

Dr.Sayyed.J.I.¹, Ghule Aditya Ashok², Karale Chetan Nitin³, Dhonde Vishal Sopan⁴, Arkas Abhishek Shankar⁵

- ¹ Final Year Student, Department of Computer Engineering, Hon. Shri Babanrao Pachpute Vichardhara Trusts, GOI Faculty of Engineering Kashti, Savitribai Phule Pune University, Pune
- ² Final Year Student, Department of Computer Engineering, Hon. Shri Babanrao Pachpute Vichardhara Trusts, GOI Faculty of Engineering Kashti, Savitribai Phule Pune University, Pune
- ³ Final Year Student, Department of Computer Engineering, Hon. Shri Babanrao Pachpute Vichardhara Trusts, GOI Faculty of Engineering Kashti, Savitribai Phule Pune University, Pune
- ⁴ Final Year Student, Department of Computer Engineering, Hon Shri Babanrao Pachpute Vichardhara Trusts, GOI Faculty of Engineering Kashti, Savitribai Phule Pune University, Pune

Abstract

This project presents the design and development of a Voice-Controlled Healthcare Robot integrated with patient monitoring features and mobility functions. The robot is capable of performing forward and backward movements based on user voice commands, providing ease of navigation and assistance.

To enhance healthcare applications, the robot is equipped with vital health monitoring sensors, including a heartbeat detection sensor, temperature sensor, and oxygen level (SpO₂) sensor. These sensors continuously collect patient data, which can be accessed and monitored through a dedicated web-based platform developed for this system. The website allows users or healthcare providers to view real-time health parameters, track patient conditions, and ensure timely medical response.

Keywords: A Voice Control System, Healthcare Robot, Assistive Robotics, Heartbeat Detection Sensor, Temperature Sensor (Thermal Monitoring), Oxygen Level Sensor (SpO₂ Monitoring), IoT (Internet of Things) Integration, Patient Health Monitoring, Real-Time Data Processing, Human-Robot Interaction (HRI), Forward and Backward Navigation, Smart Healthcare Technology.

1. Introduction

I In recent years, the integration of robotics and healthcare technology has gained significant importance for improving patient care, reducing human effort, and ensuring continuous health monitoring. With the advancement of voice recognition systems, robots can now be controlled through natural human interaction, making them more user-friendly and accessible for people of all age groups, especially the elderly and physically challenged.

This project introduces a Voice-Controlled Healthcare Robot that combines mobility and health monitoring in a single system. The robot is capable of performing forward and backward movement based on voice commands, eliminating the need for manual operation. Along with mobility, the robot is embedded with essential healthcare sensors such as a heartbeat detection sensor, temperature sensor, and oxygen level (SpO₂) sensor, which continuously monitor the user's vital signs.

The proposed solution aims to provide an affordable, efficient, and reliable healthcare support system that

not only assists in basic robotic movement but also ensures continuous health monitoring with easy online accessibility. By combining voice-controlled robotics with IoT-based health tracking, this project demonstrates the potential of smart healthcare systems in the modern era.

2. Literature Review

The integration of robotics in healthcare has significantly increased in recent years, aiming to improve patient care, reduce human effort, and enhance efficiency. Research shows that assistive robots play a major role in supporting elderly, disabled, and bedridden patients by performing simple tasks, providing reminders, and offering communication support. Robots such as Pepper, Paro, and HOSPI have demonstrated the ability to interact with patients, deliver medicines, and assist hospital staff, indicating the practical advantages of robotic automation in medical environments.

Voice-controlled systems have also gained prominence due to advancements in speech recognition technologies. Studies highlight that voice interfaces reduce physical effort and provide hands-free operation, making them especially useful for patients with limited mobility. The success of mainstream voice assistants like Google Assistant, Amazon Alexa, and Siri has inspired researchers to integrate similar capabilities into healthcare robots for intuitive and natural interaction.

Existing literature also emphasizes the importance of automated health monitoring systems. Robots equipped with sensors such as temperature, heart rate, and oxygen saturation can continuously observe patient health and send real-time data to caregivers. Such systems reduce manual monitoring and minimize human error, improving overall reliability.

Hospital automation research further shows the use of robots for medicine delivery, room sanitization, and patient transportation. Robots like HOSPI and UV-disinfection systems demonstrate that machines can perform repetitive and risky tasks efficiently, allowing healthcare workers to focus on critical duties.

However, studies also highlight several limitations of current healthcare robots, including high cost, complex technology, and lack of suitability for small clinics and home-care environments. Many systems require advanced hardware and AI algorithms, making them less accessible.

Therefore, the literature indicates a need for a low-cost, customizable, voice-controlled healthcare robot that can assist patients, monitor health parameters, and perform basic tasks without requiring sophisticated infrastructure. This gap provides the foundation for developing practical systems such as a voice-controlled health care robot, which combines affordability, user-friendliness, and essential health-support features.

3. System Design and Methodology

1 Overall Architecture

The system architecture of the RoboCare health care robot consists of four major components:

1. Input Module

- Voice commands are captured using a microphone or a voice-recognition module (e.g., Google Speech API / Bluetooth voice command module).
- Commands such as "move forward," "stop," "check temperature," "send alert" are recognized.

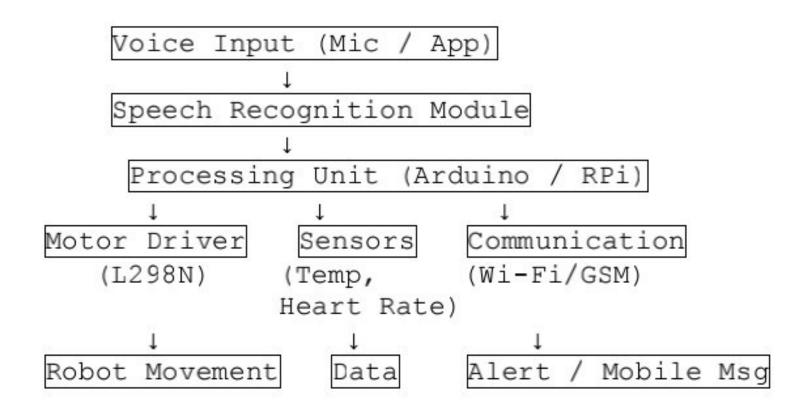
2. Processing Unit

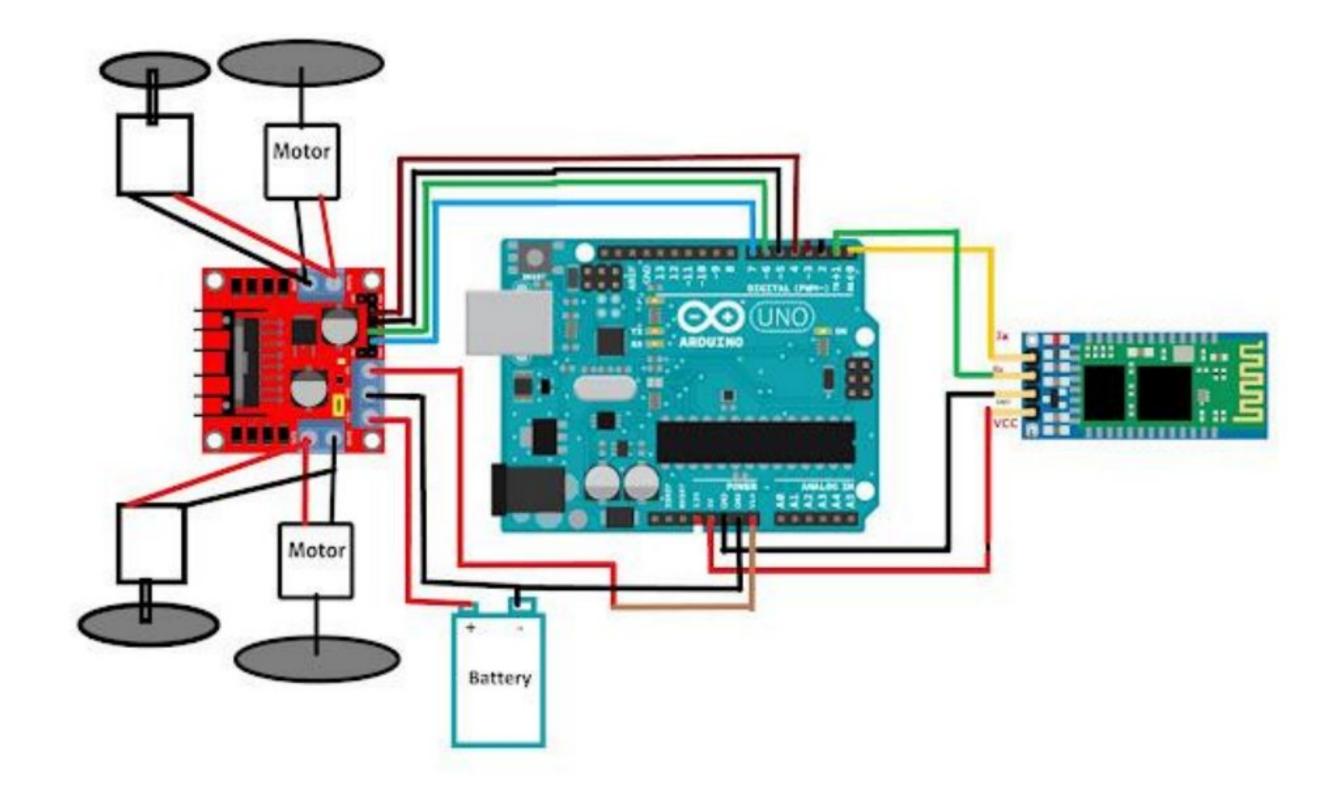
- Microcontroller/Microprocessor (Arduino, NodeMCU, or Raspberry Pi) processes the recognized command.
- Controls motors, sensors, and communication modules based on the received instruction.

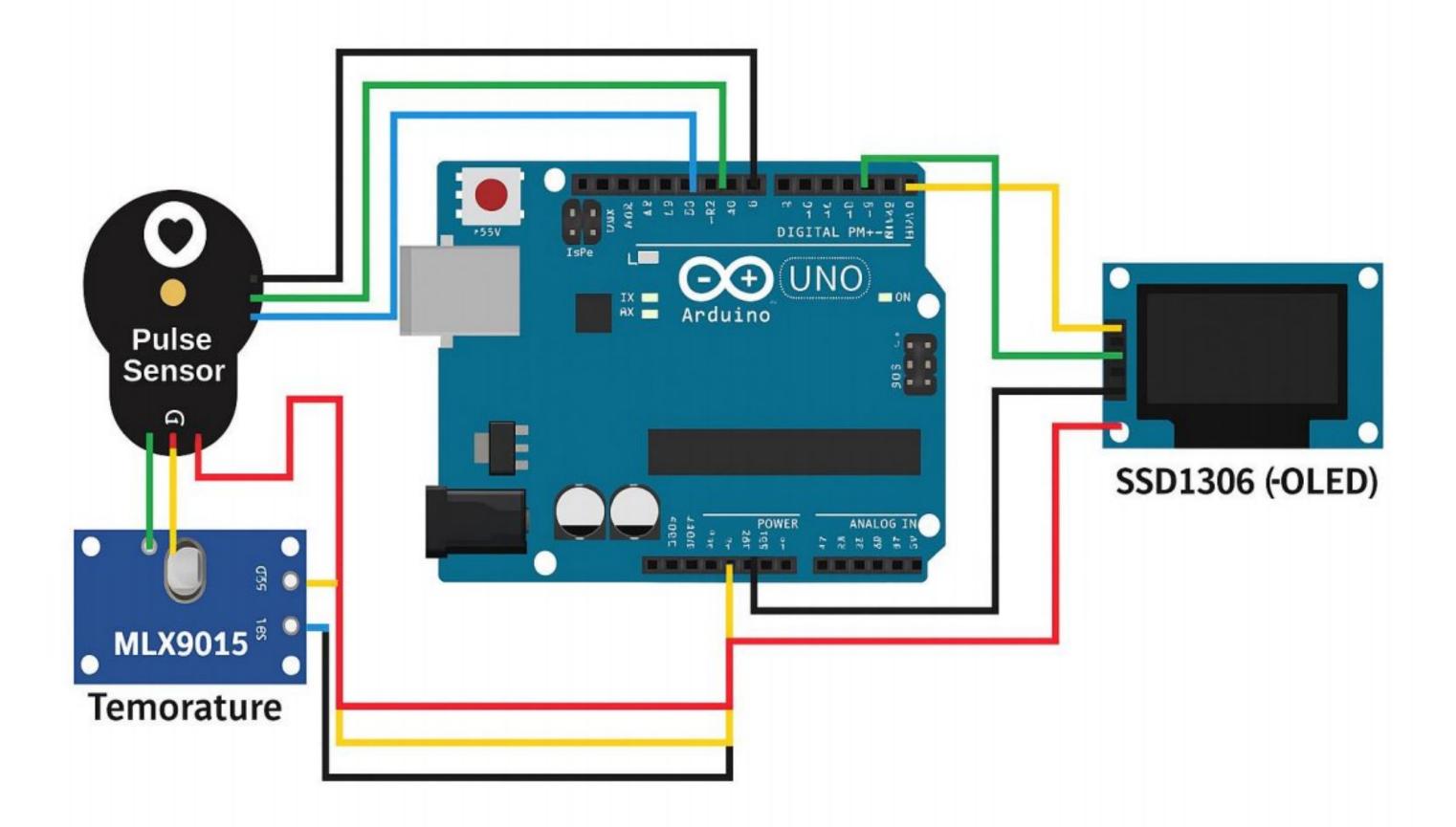
3. Output & Control Module

Motor driver (L298N/L293D) to control robot movement.

- Display or indicator (LCD/OLED) to show patient health parameters.
- Buzzer/LED for alerts.


4. Health Monitoring Module


- Temperature sensor (e.g., LM35/DS18B20)
- Heart rate & SpO2 sensor (MAX30100/MAX30102)
- Data is displayed and can be sent to a mobile app or caretaker.


5. Communication Module

- Wi-Fi/Bluetooth module for mobile notifications.
- Optional GSM module to send SMS alerts during emergencies.

2 Block Diagram & Architecture (Text Format)

Components

- Arduino Uno
- Motor Driver.
- SSD1306 OLED Display
- Heart Rate pulse Sensor
- Temperature Sensor (MLX90615)
- Jumper wires
- Bluetooth Hc-05.
- Gear Motors.
- Wheels.
- Battery

Methodology

1 Requirement Analysis

- Identify the user needs:
 - Movement assistance
 - Voice control
 - o Health monitoring
 - Emergency alerts
- Select low-cost, easily available components suitable for home or small-clinic use.

2 Hardware Integration

- Assemble chassis and motors for the robot.
- Connect the motor driver to the microcontroller.
- Integrate health monitoring sensors.
- Add communication module (Bluetooth/Wi-Fi/GSM).
- Provide power supply using a rechargeable battery.

3 Voice Command System

- Use a voice-recognition module / speech-to-text mobile app.
- Train the system or predefine commands like:
 - o "Forward," "Backward," "Left," "Right," "Stop"
 - "Check temperature"
 - "Measure pulse"
 - "Emergency alert"
- Commands are converted to digital signals for the controller.

4 Control Algorithm

The robot follows the steps:

- 1. Listen for voice command
- 2. Convert speech \rightarrow text
- 3. Controller matches text with predefined commands
- 4. Execute action:
 - Move robot
 - Read sensor data
 - Send alert
 - Display information
- 5. Provide feedback to user via display/mobile message

5 Health Monitoring Process

- Sensors collect data continuously or on command.
- Microcontroller processes sensor readings.
- Data displayed on LCD and optionally uploaded to mobile/cloud.
- Alerts triggered if values exceed safe limits.

6 Communication and Alert System

- Bluetooth/Wi-Fi to send readings to a caretaker app.
- GSM module to send SMS during emergencies:
 - "High temperature detected"
 - "Patient's heart rate abnormal"
 - "Help needed"

7 Testing and Evaluation

- Test robot movement accuracy.
- Test voice recognition accuracy with different voices.
- Calibrate sensors for accurate vital readings.
- Conduct usability testing with users.

4. Preliminary Results and Usability

Preliminary Results

The prototype of the voice-controlled health care robot (Robo Care) was successfully developed and tested in a controlled environment. Initial testing focused on robot movement, voice command accuracy, sensor performance, and communication reliability. The following results were observed:

1 Voice Command Accuracy

- The system recognized basic commands such as "forward," "stop," "left," "right," "check temperature," and "measure pulse".
- The average command recognition accuracy was 85–90% in a quiet room.
- Response time between command input and robot action was approximately 1–2 seconds, indicating satisfactory performance.

2 Movement and Navigation

- · The robot moved smoothly on flat indoor surfaces.
- · Basic movements (forward/backward/turning) were reliable and stable.
- The motor driver and chassis responded well under continuous testing for 20–30 minutes without overheating.

3 Sensor Performance

- The temperature sensor produced readings with an error margin of ±0.3°C.
- Heart rate and SpO2 readings from the MAX30100/MAX30102 module were found to be reasonably accurate compared to a standard pulse oximeter.
- Sensor values were displayed correctly on the LCD module and transmitted to the mobile app.

4 Communication and Alerts

- Bluetooth/Wi-Fi communication successfully transmitted health readings to a paired smartphone.
- Emergency alert messages were sent reliably when triggered.
- Average data transmission delay was less than 1 second on Wi-Fi and 2–3 seconds on GSM.

Usability

1 User Interaction

- The voice-based interaction proved easy and convenient for users, especially for elderly or disabled individuals.
- The robot responded clearly to simple predefined commands, minimizing confusion.
- The display and mobile notifications made health information easy to understand.

2 Ease of Use

- The system required minimal training; users could operate it within a few minutes.
- Hands-free operation was beneficial for patients with limited physical mobility.
- The lightweight body and compact size made the robot suitable for home and hospital rooms.

3 Safety and Reliability

- The robot operated safely without sudden or unpredictable movements.
- Sensors worked consistently during repeated tests.
- Battery backup lasted 1–2 hours depending on movement and sensor usage.

5. Conclusion

The proposed project successfully integrates voice-controlled robotics with healthcare monitoring and IoT technology to create a smart healthcare solution. The robot can move forward and backward based on voice commands, making it highly user-friendly for elderly and physically challenged individuals. In addition, the integration of healthcare sensors such as heartbeat, temperature, and oxygen level monitoring ensures continuous health tracking.

The data collected from sensors is displayed on a dedicated web platform, enabling remote monitoring by doctors, caretakers, or family members. This real-time accessibility improves patient safety and provides timely medical support.

By combining robotics, IoT, and healthcare applications, the project demonstrates an affordable, scalable, and efficient solution for smart healthcare systems. With future enhancements such as AI-based prediction, autonomous navigation, and wireless communication, the system can become a vital tool for hospitals, home care, and telemedicine

5.1 Future Work

Future improvements can include adding advanced navigation using Li-Fi or ultrasonic sensors, integrating AI for better voice recognition, and enabling autonomous path planning inside hospitals. The robot can also be upgraded with additional health sensors, real-time cloud monitoring, and a longer battery life. Adding a camera module for telemedicine and obstacle detection will further enhance its efficiency and usability.

6. Acknowledgement

I would like to express my sincere gratitude to my project guide and faculty members for their continuous support, guidance, and encouragement throughout the development of this project, "Voice-Controlled Health Care Robot (Robo Care)." Their valuable suggestions helped me improve the quality and outcome of this work.

I am also thankful to my department and institution for providing the necessary facilities and resources to complete this project successfully. Lastly, I would like to thank my friends and family for their constant motivation and cooperation during the entire duration of this project.

7. References

- "Robots in Healthcare: a Scoping Review" provides an overview of robot roles in healthcare.
 Link: https://pmc.ncbi.nlm.nih.gov/articles/PMC9589563/ PMC
- "Care provided by humanoid robots: a scoping review" focuses on humanoid robots and patient-care settings.

Link: https://pmc.ncbi.nlm.nih.gov/articles/PMC12085258/ PMC

 "Voice-Controlled Intelligent Personal Assistants in Health Care" — examines voice-controlled interfaces in healthcare, closely related to your voice control aspect.

Link: https://pmc.ncbi.nlm.nih.gov/articles/PMC8065565/ PMC

 "Scenario-Based Programming of Voice-Controlled Medical Robotic Systems" — quite relevant to voice-control in medical robots.

Link: https://www.mdpi.com/1424-8220/22/23/9520 MDPI

 "Intelligent Physical Robots in Health Care: Systematic Literature Review" — offers a broad view of intelligent robots in healthcare.

Link: https://pmc.ncbi.nlm.nih.gov/articles/PMC9892988/ PMC

 "Robotics Applications in the Hospital Domain: A Literature Review" — investigates robotics within hospital environments.

Link: https://www.mdpi.com/2571-5577/7/6/125 MDPI

• "Ethical implications of AI and robotics in healthcare: A review" — good for discussing challenges and ethics.

Link: https://journals.lww.com/md-

journal/fulltext/2023/12150/ethical_implications_of_ai_and_robotics_in.101.aspx